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Abstract—We consider the problem of quickest detection of an
intrusion using a sensor network, keeping only a minimal number
of sensors active. By using a minimal number of sensor devices,
we ensure that the energy expenditure for sensing, computation
and communication is minimized (and the lifetime of the network
is maximized). We model the intrusion detection (or change
detection) problem as a Markov decision process (MDP). Based
on the theory of MDP, we develop the following closed loop
sleep/wake scheduling algorithms:

1) optimal control of Mk+1, the number of sensors in the
wake state in time slot k + 1,

2) optimal control of qk+1, the probability of a sensor in the
wake state in time slot k + 1,

and an open loop sleep/wake scheduling algorithm which
3) computes q, the optimal probability of a sensor in the wake

state (which does not vary with time),
based on the sensor observations obtained until time slot k.

Our results show that an optimum closed loop control on Mk+1

significantly decreases the cost compared to keeping any number
of sensors active all the time. Also, among the three algorithms
described, we observe that the total cost is minimum for the
optimum control on Mk+1 and is maximum for the optimum
open loop control on q.

Keywords: Bayesian change detection, intrusion detection,
quickest change detection with observation cost

I. INTRODUCTION

Sensor networks are application specific networks that com-
prise a large number of tiny, energy limited, low–powered
smart sensor devices. A sensor can be in one of the two
states, the sleep state or the wake state. In the wake state,
the sensor makes measurements, performs some computation
and then communicates information to the fusion center. The
fusion center acts as a decision maker and may even act
as a controller. The sensors being energy limited, impose
stringent requirements on the energy–efficiency of the algo-
rithms employed in the fusion center. In intrusion detection
applications, the intrusions are typically rare events and hence
sensor nodes spend a majority of their time in the pre–
intrusion period which reduces the lifetime and the utility of
the sensor network. Thus, it is essential to have an energy–
efficient sleep/wake scheduling algorithm.

We are interested in quickest detection of intrusion which
apparently requires the sensors to be in the wake state all the
time. We thus have conflicting objectives (i) minimizing the
energy consumption of the network (or equivalently, maxi-
mizing the lifetime of the network) and (ii) minimizing the
detection delay.

Related literature: The problem of energy–efficient quick-
est change detection has been studied in various contexts.
Appadwedula et al. [1] study a binary hypothesis testing
problem. They minimize the probability of making an incorrect
decision subject to energy constraints. Appadwedula et al. [1]
and Rago et al. [6] study a censoring scheme, in which the
uninformative observations are not sent to the fusion center.
Note that [6] also considers a binary hypothesis testing prob-
lem. In [9], Wu et al. study sleep/wake scheduling for low duty
cycle multi–hop sensor networks (employed for continuous
monitoring applications) with synchronization errors. They
maximize the lifetime of a sensor network that guarantees a
data delivery performance. In [10], Zacharias and Sundaresan
study a centralized detection problem based on physical layer
fusion with power control at the sensors for energy efficiency.
In our work, we achieve energy–efficiency by keeping only a
minimal number of sensors active.

Our work differs from [1] and [6] in the following ways:

• We consider a sequential change–detection problem
whereas [1] and [6] consider a simple binary hypothesis
testing problem. [1] and [6] consider a static optimization
problem whereas our work involves dynamic optimiza-
tion.

• In [6], Rago et al. propose a censoring algorithm which
makes a decision on whether to transmit an observation
or not based on the information content of the obser-
vation and the communication–cost. Note that censoring
runs at each of the sensors and does not take into
account the sensing, sampling, and computation costs. [1]
also uses the censoring scheme described above. In our
work, we control the sleep/wake activity of the sensors
thereby taking into account the energy required for sens-
ing/computation. In our work, all sensor–observations are
transmitted to the fusion center.

Summary of contributions: We summarize the main con-
tributions of this paper below.

(i) We model the problem of quickest change (intrusion)
detection by using a minimal number of observations in
the Bayesian framework as a Markov decision process
(MDP) that captures 1) the cost due to false alarm, 2)
the cost due to the detection delay, and 3) the cost per
observation per sensor in the network.

(ii) We derive the following closed loop scheduling algorithm
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to control the number of sensors in the wake state, when
there is feedback between the fusion center and the
sensors.
At time slot k, the fusion center receives an observation
vector, X(Mk)

k := (X(1)
k ,X

(2)
k , · · · ,X

(Mk)
k ) ∈ R

Mk and
computes the posterior probability of change, Πk. The
fusion center then chooses a control from the set of avail-

able controls, A =

{
stop,

⋃
m∈{0,1,··· ,n}(continue,m)

}
.

The control uk = (continue,m) means that the detection
process is continued at time slot k +1 with m sensors in
the wake state. We observe that {Πk} forms a controlled
Markov chain. Based on the theory of MDP, we derive
the optimal policy µ∗ which gives

1) The stopping rule:
Stop at time slot τ∗ = inf {k ≥ 0 : Πk ≥ Γ},
where Γ ∈ [0, 1] is a threshold, and

2) The control policy for Mk+1:
From the optimal policy, we can infer that there
exists a map M∗ : [0, 1] → Z+ such that the optimal
number of sensors in the wake state in time slot k+1
is given by Mk+1 = M∗(Πk).

We provide some structural results for the optimal policy.
(iii) We also derive another closed loop scheduling algorithm

to control qk+1, the probability that a sensor is in the
wake state at time slot k + 1.
At time slot k, the fusion center receives an observation
vector X(Mk)

k and computes Πk, the posterior probability
of change. The fusion center then chooses a control uk ∈
A =

{
stop,

⋃
q∈[0,1](continue, q)

}
. If uk = (0, qk+1)

is the control chosen by the fusion center, then Mk+1

is Bernoulli distributed with parameters (n, qk+1). We
observe that {(Πk,Mk)}, k ∈ N forms a controlled
Markov chain. Based on the theory of MDP, we derive
the optimal policy µ∗ which gives

1) The stopping rule:
Stop at time slot τ∗ = inf {k ≥ 0 : Πk ≥ Γ},
where Γ ∈ [0, 1] is a threshold, and

2) The control policy for qk+1:
From the optimal policy, we can infer that there
exists a map q∗ : [0, 1] → [0, 1] such that the optimal
probability that a sensor is in the wake state in time
slot k + 1 is given by qk+1 = q∗(Πk).

We show some structural results for the optimal policy.
(iv) We also derive the following open loop scheduling algo-

rithm to control the sleep/wake activity of the sensors
when the feedback between the fusion center and the
sensors is not available. At time slot k, each sensor
chooses to be in the wake state with probability q,
independent of the state of other sensors. The fusion
center receives a vector of observations, X(Mk)

k (Mk ∼
Bernoulli(n, q)), and computes the posterior probability
of change Πk. The fusion center then decides whether
to “stop” the decision process or “continue” sampling.
We observe that {(Πk,Mk)} process forms a controlled

Markov chain. Based on the theory of MDP, we obtain

1) The stopping rule:
Stop at time slot τ∗ = inf {k ≥ 0 : Πk ≥ Γ},
where Γ ∈ [0, 1] is a threshold.

Note that q is constant over time and we choose q that
minimizes the Bayesian cost given in Eqn. 8.

Note: For all closed/open loop policies Mk+1(·) = 0,∀k ≥ τ∗.

Outline of the paper: The rest of the paper is organized as
follows. In Section II, we formulate the sleep/wake scheduling
problem for quickest change detection. In Section III, we solve
the optimal sleep/wake scheduling problem that minimizes the
detection delay when there is a feedback from the controller
to the sensors. In Section IV, we discuss an optimal open
loop sleep/wake scheduler that minimizes the detection delay.
Finally, we summarize the paper in Section V.

II. PROBLEM FORMULATION

In this section, we describe the quickest intrusion detection
problem with a minimal number of observations and set up the
model. We consider a sensor network comprising n (acoustic
or vibration or magnetic or a combination of these) sensors
deployed in a region A for an intrusion detection application.
The sensors are collocated, i.e., the region A is covered by the
sensing coverage of each of the sensors. An intrusion happens
at a random time. The problem is to detect the intrusion as
early as possible using a minimal number of observations
subject to a false alarm constraint.

We consider a discrete time system and the basic unit
of time is one slot. We assume that the sensor network is
time synchronized. An event (“intruder” in a security system)
happens at a random time T . The distribution of T (the time
slot at which the intrusion/change/event happens) is given by

P{T = k} =
{

π0 if k ≤ 0,
(1 − π0)(1 − p)k−1p if k > 0.

where 0 < p ≤ 1 and 0 ≤ π0 ≤ 1 represents the
probability that the change (“intrusion”) happened even before
the observations are made (k ≤ 0). We model the intrusion
by a change in the probability law of the sensor observations
at a random time T . Note that the observations are obtained
sequentially starting from time slot k = 1 onwards. We say
that the state of nature, Sk is 0 before the occurrence of the
event (i.e., Sk = 0 for k < T ) and 1 after the occurrence of the
event (i.e., Sk = 1 for k ≥ T ). Before the event takes place,
i.e., for 1 ≤ k < T , sensor i observes X

(i)
k ∼ f

(i)
0 (.) and

after the event takes place, i.e., for k ≥ T , sensor i observes
X

(i)
k ∼ f

(i)
1 (.) (because the sensors are collocated), where

f
(i)
0 and f

(i)
1 are probability density functions (pdfs). Note that

f
(i)
0 �= f

(i)
1 for all i. Conditioned on the state of the nature,

the observations are independent across sensors and across
time (the event and the observation models are essentially
the same as in [8]). The observations are transmitted to a
fusion center (the communication between the sensors and
the fusion center is assumed to be error–free as the channel
noise could be thought of as captured in the sensors itself)
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through parallel communication channels, [5]. At each time
slot k, the fusion center receives a vector of observation
X(Mk)

k =
(
X

(1)
k ,X

(2)
k , · · · ,X

(Mk)
k

)
. At time slot k, based on

the observations so far,
{
X(Mt)

t , t = 1, 2, · · · , k
}

, π0, the

distribution of T , f
(i)
0 (·)s and f

(i)
1 (·)s, the fusion center

1) makes a decision on whether to raise an alarm or to
continue sampling, and

2) controls the number of sensors in the wake state at time
slot k + 1.

The costs involved here are i) λs, the cost due to
(sampling + computation + communication) per observation
per sensor, ii) λf , the cost of false alarm, and iii) the detection
delay where the detection delay is defined as the delay between
the occurrence of the event and the detection. Note that λs

can also be considered as energy consumption per observation
per sensor. We are interested in finding the quickest detection
procedure with a minimal number of observations that mini-
mizes the detection delay subject to a false alarm constraint,
PFA ≤ α, where PFA is the probability of false alarm. Note
that the optimal detection procedure should give i) the optimal
stopping time τ∗ and ii) the optimal control on Mk, the number
of sensors in the wake state at time slot k. We thus have a
constrained optimization problem,

min
τ,M1,M2,··· ,Mτ

E

[
(τ − T )+ + λs

τ∑
k=1

Mk

]
(1)

subject to PFA ≤ α

where τ is a stopping time. Note that the above problem could
be considered as a quickest change detection problem with
energy constraint and λs as a Lagrange multiplier that relaxes
the energy constraint.

Let Πk be the posterior probability of the event happening
at or before time slot k. Πk is given by

Πk := E

[
1{T≤k}

X(M1)
1 · · ·X(Mk)

k

]
(2)

and hence, EΠk = EE

[
1{T≤k}

X(M1)
1 · · ·X(Mk)

k

]
= E1{T≤k} (3)

The Lagrangian relaxation of the problem defined in Eqn.1 is

R(τ) = E

[
λf1{τ<T} + (τ − T )1{τ≥T} + λs

τ∑
k=1

Mk

]
= E

[
λf1{τ<T} +

τ−1∑
k=0

1{T≤k} + λs

τ∑
k=1

Mk

]
= E

[
λf (1 − Πτ ) +

τ−1∑
k=0

Πk + λs

τ∑
k=1

Mk

]
= E

[
λf (1 − Πτ ) +

τ−1∑
k=0

(Πk + λsMk+1)
]

(4)

Refer Eqn. 3 and [7] for the justification of the steps in Eqn. 4.
The Lagrange multiplier λf is chosen such that the false alarm

constraint is satisfied with equality, i.e., PFA = α (refer [7]).
Thus, the constrained optimization problem defined in Eqn. 1
can be viewed as

min
τ,M1,M2,··· ,Mτ

R(τ)

= min
τ,M1,M2,··· ,Mτ

E

[
λf (1 − Πτ ) +

τ−1∑
k=0

(Πk + λsMk+1)
]

(5)

We consider the following possibilities for the problem defined
in Eqn. 5.

1) Closed loop control on Mk+1: At time slot k, the
fusion center makes a decision on Mk+1, the number
of sensors in the wake state in time slot k + 1, based
on the information available (at the fusion center) up to
time slot k. The decision is then fed back to the sensors
via a feedback channel. Thus, the problem becomes

τ∗,M∗
1 ,M∗

2 , · · · ,M∗
τ∗ = arg min

τ,Mk+1,k=0,1,2,··· ,τ−1

E

[
λf (1 − Πτ ) +

τ−1∑
k=0

(Πk + λsMk+1)
]

(6)

2) Closed loop control on qk+1: At time slot k, the fusion
center makes a decision on qk+1, the probability that a
sensor is in the wake state at time slot k+1. qk+1 is then
broadcast via a feedback channel to the sensors. Thus, it
is easy to see that the number of sensors in the wake state
Mk+1, at time slot k + 1, is Bernoulli distributed with
parameters (n, qk+1). Also note that EMk+1 = nqk+1.
Thus, the problem defined in Eqn. 5 becomes

τ∗, q∗1 , q∗2 , · · · , q∗τ∗ = arg min
τ,qk+1,k=0,1,2,··· ,τ−1

E

[
λf (1 − Πτ ) +

τ−1∑
k=0

(Πk + λsnqk+1)
]

(7)

3) Open loop control on q: At time slot k, each sensor
node is in the wake state with probability q. Note that
Mk, the number of sensors in the wake state at time
slot k is Bernoulli distributed with parameters (n, q).
Also note that {Mk} process is i.i.d. over time and that
EMk = nq. Note that the probability q is constant over
time. Thus, the problem defined in Eqn. 5 becomes

τ∗ = arg min
τ

E

[
λf (1 − Πτ ) +

τ−1∑
k=0

(Πk + λsnq)
]

(8)

Here, q is chosen such that it minimizes the above cost.

Note that the first two scenarios require a feedback channel
between the fusion center and the sensors whereas the last
scenario does not require a feedback channel.

In Section III, we formulate the optimization problem
defined in Eqns. 6 and 7 in the framework of MDP and
study the optimal policy. We formulate the open loop control
optimization problem defined in Eqn. 8 in the MDP framework
and obtain optimal policy in Section IV.
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III. QUICKEST CHANGE DETECTION WITH FEEDBACK

In this section, we study the sleep/wake scheduling problem
when there is a feedback channel from the controller to the
sensors.

At time slot k, the fusion center receives X(Mk)
k and com-

putes Πk. Recall that Πk = P
{

T ≤ k
X(M1)

1 , · · · ,X(Mk)
k

}
is the posterior probability of the event having occurred at
or before time slot k. For the change detection problem, a
sufficient statistic [4] for the sensor observations up to time
slot k, is given by {Π0,Π1, · · · ,Πk}. When an alarm is raised
the system enters into an absorbing state ‘a’. Thus, the state
space of the {Πk} process is S =

{
[0, 1] ∪ {a}} (we always

work with the Borel space, (S,B(S)) ). Note that Πk is also
called the information state of the system.

In the rest of the section, we explain the closed loop
control techniques used to obtain the sleep/wake scheduling
algorithms.

A. Control on Mk+1, the number of sensors in the wake state
at time slot k + 1

The fusion center on receiving X(Mk)
K computes Πk, the

posterior probability of the event. It then makes a decision Dk

on “stop”ping or to “continue” sampling. Note that Dk = 0
means that the sampling (and the detection process) is contin-
ued and Dk = 1 means that an alarm is raised. If Dk = 0, the
controller chooses Mk+1 = m, the number of sensors to be in
the wake state at time slot k+1. Thus the set of controls at time

slot k is given by A =
{

stop,
⋃

m∈{0,1,··· ,n}(continue,m)
}

=
{
1, (0, 0), (0, 1), · · · , (0, n)

}
.

When the control uk = (0,m) is chosen, the information
state at time slot k + 1, Πk+1 can be computed recursively
using the map Φ : S × A → S as

Πk+1 := Φ
(

Πk, (0,m)
)

=
Π̃kφ1

(
X(m)

k+1

)
φ2

(
X(m)

k+1; Π̃k

) (9)

where

Π̃k := Πk + (1 − Πk)p (10)

X(m)
k := (X(1)

k ,X
(2)
k , · · · ,X

(m)
k ),

φ1(X
(m)
k ) :=

m∏
i=1

f
(i)
1 (X(i)

k ),

φ2(X
(m)
k ; Π̃) := Π̃

m∏
i=1

f
(i)
1 (X(i)

k ) + (1 − Π̃)
m∏

i=1

f
(i)
0 (X(i)

k )

and when the control uk = 1 is chosen, Πk+1 is given as

Πk+1 := Φ(Πk, 1) := a w.p.1 (11)

Note: Π̃k = EΠk+1 before X(.)
k+1 is observed and {Πk} forms

a controlled Markov chain. From Eqn. 6, we see that when the
(state, action) pair is (π, u), the single stage cost function is

c(π, u) =


λf (1 − π) , π ∈ [0, 1], u = 1
π + λsm, π ∈ [0, 1], u = (0,m)
0, π = a

Therefore, the optimization problem defined in Eqn. 6 can be
stated as

J∗(π0) = min
u0,u1,u2,··· E

[ ∞∑
k=0

c(Πk, uk)
Π0 = π0

]
We use the theory of MDP to solve the above optimization
problem. From [2], it is clear that we can find a stationary
optimal policy which solves the above optimization problem.
Let µ : S → A be a stationary policy and µ∗ : S → A be the
optimal stationary policy. Then, we have

Jµ(π0) = E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

and J∗(π0) = min
µ

E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

= E

[ ∞∑
k=0

c(Πk, µ∗(Πk))
Π0 = π0

]

Note that the optimal stationary policy µ∗ is independent of
the initial state Π0 = π0 [2]. By Bellman’s equation, we have

J∗(π) = min
u∈A

{
c(π, u) + Eφ2(x(m);π̃)

[
J∗

(
Φ(π, u)

)]}
.

Note: The notation Eφ2(x(m);π̃)[·] means that the expectation is
taken with respect to the pdf φ2(x(m); π̃)1. Since J∗(a) = 0,
the above equation can be written as

J∗(π) = min
{
λf · (1 − π

)
, π + AJ∗

(
π̃
)}

. (12)

where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π̃) = min
0≤m≤n

{
λsm + E

[
J∗

(
π̃ · φ1(x(m))
φ2(x(m); π̃)

)]}
(13)

Note that J∗ gives the cost defined in Eqn. 6. Thus,
the optimal policy µ∗ that achieves J∗ gives τ∗ and
M∗

k , k = 1, 2, · · · , τ∗. The existence of the optimal policy
is shown in the following theorem.

Theorem 1: As the state space is a Borel space, the action
space is compact, the transition kernel is strongly continuous,
and the single stage and terminal cost functions are bounded
continuous functions, an optimal policy exists.

Proof: See Chap. 3, Vol. II of [2] and [3].
We now prove some properties of the minimum total cost

function J∗.
Theorem 2: The total cost function J∗ is concave.

Proof: See Appendix I.
Theorem 3: The optimal stopping rule for the quickest

change-detection problem with a dynamic control on Mk+1,
the number of sensors in the wake state at time slot k + 1
is a threshold based rule, where the threshold is on posterior
probability of change.

Proof: See Appendix II.

1Unless explicitly stated, all the expectations are taken with respect to the
pdf φ2(x(m); π̃).
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Fig. 1. Optimum number of sensors in the wake state M∗ for n = 10
sensors, λf = 100.0, λs = 0.5, f0 ∼ N (0, 1) and f1 ∼ N (1, 1). Note
that Γ = 0.9 corresponds to the threshold.

Note that Theorem 3 addresses only the stopping time part
of the optimal policy µ∗. We now explore the structure of the
optimal closed loop control policy for M∗ : [0, 1] → Z+, the
optimal number of sensors in the wake state in the next time
slot. We choose Mk+1 = M∗

k+1 = M∗(Πk). We define the

functions B
(m)
J∗ : [0, 1] → R+ and A

(m)
J∗ : [0, 1] → R+ as

B
(m)
J∗ (π̃) := Eφ2(X(m);π̃)

[
J∗

(
π̃ · φ1(X(m))
φ2(X(m); π̃)

)]
,

and A
(m)
J∗ (π̃) := λsm + B

(m)
J∗ (π̃).

Theorem 4: For any π̃ ∈ [0, 1], the cost-to-go function
B

(m)
J∗ (π̃) monotonically decreases with m.

Proof: See Appendix III.
Note that B

(m)
J∗ (π̃) can be thought of as the cost–to–go func-

tion for sensors used in the next slot. Thus, Theorem 4 states
that the cost–to–go reduces as the number of observations
increases. The intuition behind this is that B

(m)
J∗ (π̃) represents

the uncertainty about the event left at the end of the current
time slot and more sensors resolve the uncertainty in a better
way.

Numerical Results: We consider the following scenario: the
change–time T ∼ geometric(0.01), π0 = 0, f

(i)
0 ∼ N (0, 1)

and f
(i)
1 ∼ N (1, 1). We set the cost per observation per sensor,

λs to 0.5 and the cost of false alarm, λf to 100.0 (this sets
PFA to 0.04). We consider n = 10 sensors. We compute M∗

(from the optimal policy µ∗ given by Eqn.12) by the value
iteration algorithm [2],[3] and plot in Fig. 1. We note that
in any time slot, it is not economical to use more than 3
sensors (though we have 10 sensors). Also, from Fig. 1, it
is clear that M∗ increases monotonically for π < 0.6 and
then decreases monotonically for π ≥ 0.6. Also note that,
the region π ∈ [0.5, 0.82] requires many sensors for optimal
detection whereas the region [0.0, 0.3]∪[0.9, 1.0] requires the
least number of sensors. This is due to the fact that uncertainty
is more in the region π ∈ [0.5, 0.82] whereas it is less in the
region [0.0, 0.3] ∪ [0.9, 1.0].

In our numerical experiment, the event occurs at T = 152.
When Mk+1(π) = M∗(π) (taken from Fig. 1), we see that
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λs = 0.5, f0 ∼ N (0, 1) and f1 ∼ N (1, 1).
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the detection happens at τM∗ = 161. When Mk+1(π) = 10
sensors (no sleep scheduling), we find the detection epoch to
be τ10 = 153. When Mk+1 = 3 sensors (we chose 3 because
M∗ ≤ 3), the stopping happens at τ3 = 156. From the above
stopping times, it is clear that the detection delay does not vary
significantly in the above three cases. We plot the trajectory of
a sample path of Πk versus the time slot k in Fig. 2. A close
look at the Fig. 2 shows that all the three strategies follow
almost the same trend. Also, we see from Fig. 2, that the πk

trajectory corresponding to Mk+1(π) = 10 (and Mk+1(π) =
3) gives more reliable information about the event than the πk

trajectory corresponding to Mk+1(π) = M∗. We also plot the
total cost function J(π) for the above cases in Fig. 3. Though
the detection delays do not vary much, the total cost varies
significantly. This is because the event happens at time slot
T = 152. In the case of Mk+1 = M∗, it is clear from Figs. 1
and 2 that only one sensor is used for the first 158 time slots.
This reduces the cost by 10 times compared to the case of
Mk+1 = 10 (in this sample path) and about 3 times compared
to the case of Mk+1 = 3 (in this sample path). We note from
Fig. 3, that it is better to keep 3 sensors active all the time than
keeping 10 sensors active all the time. Note that Mk+1 = 1
achieves a small cost but a large detection delay.
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Define the differential cost d : {1, 2, · · · , n} → R+ as

d(m;π) = B
(m−1)
J∗ (π̃) − B

(m)
J∗ (π̃) (14)

Recall that π̃ = π + (1 − π)p. Note that d is bounded,
continuous, and d(· ; 1) = 0. We are interested in d(m;π)
for π ∈ [0, Γ). In Fig. 4, we plot the differential cost
function d(m; ·) given in Eqn. 14 for m = 1, 2 and 3. We
observe that d(m;π) monotonically decreases in m, for each
π ∈ [0,Γ) (i.e., d(1;π) ≥ d(2;π) ≥ d(3;π)). We observe
this monotonicity property for different sets of experiments
for the case when f0 and f1 belong to the Gaussian class of
distributions. We hypothesize this monotonicity property of d
and state the following theorem which gives a structure for
M∗, the optimal number of sensors in the wake state.

Theorem 5: If for each π ∈ [0,Γ), d(m;π) decreases
monotonically in m, then the optimal number of sensors in
the wake state, M∗ : [0, 1] → {0, 1, · · · , n} is given by

M∗(π) = max
{
m : d(m;π) ≥ λs

}
Proof: Eqn. 13 and the monotone property of d(m; .)

proves the theorem.
The above theorem is evident from Fig. 4.

B. Control on qk+1, the probability that a sensor is in the
wake state at time slot k + 1

Here, we consider the scenario, where at time slot k,
the fusion center (controller) upon receiving X(Mk)

k makes a
decision Dk on stopping (Dk = 1) or to continue sampling
(Dk = 0). If Dk = 0, the fusion center computes the optimal
qk+1 ∈ [0, 1], the probability of a sensor node being awake at
slot k + 1. Thus the set of controls at time slot k is given by

A =
{

stop,∪q∈[0,1](continue, q)
}

=

{
1,∪q∈[0,1](0, q)

}
.

When the control uk = (0, qk+1) is chosen, Mk+1, the
number of sensors in the wake state at time slot k + 1 is
Bernoulli distributed with parameters (n, qk+1). Let γm(qk+1)
be the probability that m sensors are in the wake state at time
slot k + 1. γm(qk+1) is given by

γm(qk+1) =
(

n

m

)
qm
k+1(1 − qk+1)n−m (15)

The information state at time slot k + 1 can be computed
recursively as

Πk+1 := Φ
(

Πk, (0,Mk+1)
)

=
Π̃kφ1

(
X(Mk+1)

k+1

)
φ2

(
X(Mk+1)

k+1 ; Π̃k

) (16)

where Π̃k, X(m)
k , φ1(X

(m)
k ), φ2(X

(m)
k ; Π̃) are the same as

those defined in Eqn. 10. When the control uk = 1 is chosen,
Πk+1 is given as

Πk+1 := Φ(Πk, 1) := a w.p.1 (17)

From Eqns. 16, 17, it is clear that the {(Πk,Mk)} process is
a controlled Markov chain, the state space of the chain being
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S×{0, 1, · · · , n}. From Eqn. 7, it is clear that the single stage
cost when the information state is π and the action is u, is

c (π, u) =


λf (1 − π), π ∈ [0, 1], u = 1
π + λsnq, π ∈ [0, 1], u = (0, q)
0, π = a

Therefore, the optimization problem defined in Eqn. 7 can be
stated as

J∗(π0) = min
u0,u1,u2,··· E

[ ∞∑
k=0

c(Πk, uk)
Π0 = π0

]
We use the theory of MDP to solve the above optimization
problem. From [2], it is clear that we can find a stationary
optimal policy which solves the above optimization problem.
Recall that the state space of the MDP is S × {0, 1, · · · , n}.
Since, given Πk and uk, (Πk+1,Mk+1) is independent of Mk,
it is easy to see that the optimal stationary policy does not
depend on Mk. Let µ : S → A be a stationary policy and
µ∗ : S → A be the optimal stationary policy. Hence, we have

Jµ(π0) = E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

and J∗(π0) = min
µ

E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

= E

[ ∞∑
k=0

c(Πk, µ∗(Πk))
Π0 = π0

]
Note that the optimal stationary policy µ∗ is independent of
the initial state Π0 = π0 [2]. By Bellman’s equation, we have

J∗(π) = min
u∈A

{
c(π, u) +

n∑
m=0

γm(q)E
[
J∗

(
Φ(π, u)

)]}
Since J∗(a) = 0, the above equation can be written as

J∗(π) = min
{
λf · (1 − π

)
, π + AJ∗

(
π̃
)}

. (18)

where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π̃) = min
q∈[0,1]

{
λsnq +

n∑
m=0

γm(q)E
[
J∗

(
π̃ · φ1(x(m))
φ2(x(m); π̃)

)]}
.
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Note that J∗ gives the cost defined in Eqn. 7. Thus, the optimal
policy µ∗ that achieves J∗ gives τ∗ and q∗k, k = 1, 2, · · · , τ∗.
The existence of the optimal policy and its structure is shown
in the following theorems.

Theorem 6: As the state space is a Borel space, the action
space is compact, the transition kernel is strongly continuous,
and the single stage and terminal cost functions are bounded
continuous functions, an optimal policy exists.

Proof: See Chap. 3, Vol. II of [2] and [3].

Theorem 7: The total cost function J∗ is concave.

Proof: Follows from Appendix I.

Theorem 8: The optimal stopping rule for the quickest
change-detection problem with a dynamic control on qk+1,
the probability that a sensor is in the wake state at time slot
k + 1 is a threshold based rule, where the threshold is on
posterior probability of change.

Proof: See Appendix II.

Numerical Results: We consider the same scenario as in the
case of control on Mk+1. We plot the total cost J∗(π) in Fig. 5.
We also plot the optimum probability of a sensor in the wake
state, q∗(π) in Fig. 5. We observe that q∗(π) is concave in π.
This agrees well with the intuition for the control on Mk+1.

IV. QUICKEST CHANGE DETECTION WITHOUT FEEDBACK

In this section, we study the sleep/wake scheduling problem
defined in Eqn. 8. Open loop control is applicable to the
systems in which there is no feedback channel from the fusion
center (controller) to the sensors. Here, at any time slot k,
a sensor chooses to be in the wake state with probability q
independent of other sensors. Hence, {Mk}, the number of
sensors in the wake state at time slot k is i.i.d. Bernoulli
distributed with parameters (n, q). Let γm be the probability
that m sensors are in the wake state. γm is given by

γm =
(

n

m

)
qm(1 − q)n−m (19)

We can choose q that minimizes the Bayesian cost given by
Eqn. 8.

At time slot k, the fusion center receives a vector of observa-
tion X(Mk)

k and computes Πk. Recall that {Π0,Π1, · · · ,Πk} is
a sufficient statistic for the sensor observations up to time slot
k [4]. In the open loop scenario, the state space is S =

{
[0, 1]∪

{a}} (we always work with the Borel space, (S,B(S)) ). The
set of actions is given by A = {stop, continue} = {1, 0}
where ‘1’ represents stop and ‘0’ represents continue.

Note that given a control uk, Πk+1 can be recursively
computed in the same way as shown in Eqns. 16, 17. Thus,
{(Πk,Mk)}, k ∈ Z+ is a controlled Markov chain. From
Eqn. 8, it is clear that when the information state is π, and
the action is u, then the single stage cost c(π, u) is given by

c(π, u) =


λf (1 − π), π ∈ [0, 1], u = 1
π + λsnq, π ∈ [0, 1], u = 0
0, π = a

Therefore, the optimization problem defined in Eqn. 8 can be
stated as

J∗(π0) = min
u0,u1,u2,··· E

[ ∞∑
k=0

c(Πk, uk)
Π0 = π0

]
We use the theory of MDP to solve the above optimization
problem. From [2], it is clear that we can find a stationary opti-
mal policy which solves the above optimization problem. Note
that the state space of the MDP is S × {0, 1, · · · , n}. Since,
{Mk} is an i.i.d. process, given Πk and uk, (Πk+1,Mk+1) is
independent of Mk. Hence, the optimal stationary policy does
not depend on Mk. Let µ : S → A be a stationary policy and
µ∗ : S → A be the optimal stationary policy. Hence, we have

Jµ(π0) = E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

and J∗(π0) = min
µ

E

[ ∞∑
k=0

c(Πk, µ(Πk))
Π0 = π0

]

= E

[ ∞∑
k=0

c(Πk, µ∗(Πk))
Π0 = π0

]
By Bellman’s equation, we have

J∗(π) = min
u∈A

{
c(π, u) +

n∑
m=0

γmE

[
J∗

(
Φ(π, u)

)]}
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Since J∗(a) = 0, the above equation can be written as

J∗(π) = min
{
λf · (1 − π

)
, π + AJ∗

(
π̃
)}

. (20)

where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π̃) =λsnq +
n∑

m=0

γmE

[
J∗

(
π̃ · φ1(X(m))
φ2(X(m); π̃)

)]
.

Note that J∗ gives the cost defined in Eqn. 8. Thus, the optimal
policy µ∗ that achieves J∗ gives τ∗.

Theorem 9: As the state space is a Borel space, the action
space is compact, the transition kernel is strongly continuous,
and the single stage and terminal cost functions are bounded
continuous functions, an optimal policy exists.

Proof: See Chap. 3, Vol. II of [2] and [3].
We now prove some properties of the optimal policy.
Theorem 10: The total cost function J∗ is concave.

Proof: Follows from Appendix I.
Theorem 11: The optimal stopping rule for the quickest

change-detection problem with the open loop control on the
number of sensors in the wake state is a threshold based rule,
where the threshold is on posterior probability of change.

Proof: See Appendix II.
Numerical Results: We consider a sensor network of

n = 10 nodes. We consider the following models, T ∼
geometric(0.01), π0 = 0, f

(i)
0 ∼ N (0, 1) and f

(i)
1 ∼ N (1, 1).

We set λf to 100.0 (this sets the PFA to 0.04, approximately).
This is the same scenario as before. We obtain J∗(0) for
various values of q and plotted in the Fig. 7. We obtain the
plot for λs = 0.5 and for λs = 0.0. Note that when λs > 0,
for low values of q, the detection delay cost dominates over
the observation costs in J∗(0) and for high values of q, the
observation costs dominate over the detection delay cost. Thus,
there is a trade–off between the detection delay cost and the
observation costs as q varies. This is captured in the Fig. 7.
Note that the Bayesian cost is optimal at q = 0.15. When
λs = 0, as q increases the detection delay decreases. Hence,
we see the monotonically decreasing trend for λs = 0.0.

V. SUMMARY

In this paper, we formulated the problem of sleep/wake
scheduling in a sensor network that minimizes the detection
delay by optimal use of sensing/communication resources.
Recall that we have set out to solve the problem in Eqn. 5. We
have derived the optimal control for three approaches using the
theory of MDP. We showed the existence of the optimal policy
and obtained some structural results.

From Figs. 3, 5, and 7, we note that the total cost J(π)
is the least for optimal control on Mk+1. Also, we note that
in the open loop control case, the least total cost J∗(0) =
55 is achieved when the attempt probability, q is 0.15 (this
corresponds to an average duty cycle of 0.15). It is to be noted
that this cost is larger than that achieved by the optimal closed
loop policies (J∗(0) = 50 for the closed loop control on qk+1

and J∗(0) = 38 for the closed loop control on Mk+1). From
Figs. 2 and 1, we see that when Mk+1(π) = M∗(π), the
switching of the sensors between sleep and wake states happen
only in 2 slots out of 161 slots.

We formulated the problem and showed the optimal policy
in the context of centralized detection. It is easy to extend our
results to a decentralized detection setting, [8]. As a future
work, we also plan to provide some simple heuristic policies.

APPENDIX - I

Proof of Theorem 2

We use the following Lemma to prove Theorem 2.
Lemma 1: If f : [0, 1] → R is concave, then the function

h : [0, 1] → R defined by

h(y) = Eφ2(X(m);y)

[
f

(
yφ1(x(m))

yφ1(x(m)) + (1 − y)φ0(x(m))

)]
is concave for any m, where φ1(x(m)) and φ0(x(m)) are pdfs
on X(m), 0 ≤ y ≤ 1, and φ2(x; y) = yφ1(x) + (1− y)φ0(x).

Proof: Define the function h1 : [0, 1] → R as

h1(y;x) :=f

(
yφ1(x)

yφ1(x) + (1 − y)φ0(x)

)[
yφ1(x) + (1 − y)φ0(x)

]
.

As T :=
∫ · · · dx is a linear operator and h(y) = Th1(y;x),

it is sufficient to show that h1(y;x) is concave in y. If f(y)
is concave then

f(y) = inf
(ai,bi)∈I

{
aiy + bi

}
where I = {(a, b) ∈ R

2 : ay + b ≥ f(y), y ∈ [0, 1]}. Hence,

h1(y;x)

=f

(
yφ1(x)

yφ1(x) + (1 − y)φ0(x)

)[
yφ1(x(m)) + (1 − y)φ0(x(m))

]
= inf

(ai,bi)∈I

{
ai

(
yφ1(x)

yφ1(x) + (1 − y)φ0(x)

)
+ bi

}[
yφ1(x) + (1 − y)φ0(x)

]
= inf

(ai,bi)∈I

{
aiyφ1(x) + bi

[
yφ1(x) + (1 − y)φ0(x)

]}
= inf

(ai,bi)∈I

{(
(ai + bi)φ1(x) − biφ0(x)

)
y + biφ0(x)

}
This implies that h1(y;x(m)) is concave in y.
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In the value iteration, the finite K–horizon cost–to–go func-
tion, JK

K (π) = λf · (
1 − π

)
is concave. Hence, by lemma

1, we see that the cost–to–go functions JK
K−1(π), JK

K−2(π),
· · · , JK

0 (π) are concave. Hence for 0 ≤ λ ≤ 1,

J∗(π) = lim
K→∞

JK
0 (π)

J∗(λπ1 + (1 − λ)π2) = lim
K→∞

JK
0

(
λπ1 + (1 − λ)π2

)
≥ lim

K→∞
λJK

0 (π1) + lim
K→∞

(1 − λ)JK
0 (π2)

= λJ∗(π1) + (1 − λ)J∗(π2)

It follows that J∗(π) is concave. �

APPENDIX - II

Proof of Theorems 3, 8 and 11

Define the maps C : [0, 1] → R+ and H : [0, 1] → R+, as

C(π) := λf · (1 − π
)

H(π) := π + AJ∗(π̃)

Note that C(1) = 0, H(1) = 1, C(0) = λf and H(0) =
AJ∗(p). In Theorem 3, we have

AJ∗(p)

= min
0≤m≤n

{
λsm + Eφ2(X(m);p)

[
J∗

(
p · φ1(X(m))
φ2(X(m); p)

)]}
≤ min

0≤m≤n

{
λsm + J∗

(
Eφ2(X(m);p)

[
p · φ1(X(m))
φ2(X(m); p)

])}
= min

0≤m≤n
{λsm + J∗ (p)}

= J∗ (p)
≤ λf · (1 − p

)
and in Theorems 8 and 11, we have

AJ∗(p)

=
n∑

m=0

γmEφ2(X(m);p)

[
J∗

(
p · φ1(X(m))
φ2(X(m); p)

)]

≤
n∑

m=0

γmJ∗
(

Eφ2(X(m);p)

[
p · φ1(X(m))
φ2(X(m); p)

])

=
n∑

m=0

γmJ∗ (p)

= J∗ (p)
≤ λf · (1 − p

)
.

The inequality in the second step is justified using Jensen’s
inequality and the inequality in the last step follows from the
definition of J∗.

Note that H(1) − C(1) > 0 and H(0) − C(0) < 0. As the
function H(π) − C(π) is concave, by the intermediate value
theorem, there exists Γ ∈ [0, 1] such that H(Γ) = C(Γ). This
Γ is unique as H(π) = C(π) for at most two values of π. If in
the interval [0, 1], there are two distinct values of π for which
H(π) = C(π), then the signs of H(0)−C(0) and H(1)−C(1)

should be the same. Hence, the optimal stopping rule is given
by

τ∗ = inf {k : Πk ≥ Γ}
where the threshold Γ is given by

Γ + AJ∗(Γ) =λf · (1 − Γ
)

�

APPENDIX - III

Proof of Theorem 4

Define

φj(x(m)) :=
m∏

i=1

fj(x(i)), j = 0, 1.

x(l) := (x(1), x(2), · · · , x(m), x(m+1), · · · , x(l))
u := (x(1), x(2), · · · , x(m))
v := (x(m+1), x(m+2), · · · , x(l))

π̂ :=
π̃φ1(u)

π̃φ1(u) + (1 − π̃)φ0(u)

Note that

B
(l)
J∗(π̃)

=
∫

Rl

J∗
(

π̃ · φ1(x(l))
φ2(x(l); π̃)

)[
φ2(x(l); π̃)

]
dx(l)

=
∫

Rm

∫
Rl−m

J∗
(

π̂φ1(v)
φ2(v; π̂)

)
φ2(v; π̂) dvφ2(u; π̃) du

≤
∫

Rm

J∗
(∫

Rl−m

π̂φ1(v)
φ2(v; π̂)

[
φ2(v; π̂)

]
dv

)
φ2(u; π̃) du

=
∫

Rm

J∗ (π̂) φ2(u; π̃)du

= B
(m)
J∗ (π̃)

As J∗ is concave, the inequality in the second line follows
from Jensen’s inequality. Hence proved. �
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