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ABSTRACT

We are concerned with the situation in which a wireless semsp
work is deployed in a region, for the purpose of detecting\ame
occurring at a random time and at a random location. The senso
nodes periodically sample their environment (e.g., foruatio en-
ergy), process the observations (in our case, using a CU8asdd
algorithm) and send kcal decision(which is binary in nature) to
the fusion centre. The fusion centre collects these loceikims
and uses dusion ruleto process the sensors’ local decisions and
infer the state of nature, i.e., if an event has occurred ar Gor
main contribution is in analyzing two local detection rule€om-
bination with a simple fusion rule. The local detection aitions

are based on the nonparametric CUSUM procedure from saguent
statistics. We also propose two ways to operate the locattiets
after an alarm. These alternatives when combined in vamiays
yield several approaches. Our contribution is to providaydital
techniques to calculate false alarm measures, by the usaiofiw
the local detector thresholds can be set. Simulation eaudt pro-
vided to evaluate the accuracy of our analysis. As an iktistn

we provide a design example. We also use simulations to campa
the detection delays incurred in these algorithms.

Keywords

event detection in wireless sensor networks, distributteéaion
of a change in distribution, nonparametric CUSUM technique

1. INTRODUCTION

Sensor networks are used to efficiently monitor the areadhey
deployed in, and to help in detecting events so that remedizir-
rective measures can be taken. This paper focuses on theaftud
sequential event detectiar sequential change detection sen-
sor networks. Since the cost of communication, in terms titba
consumption, is large as compared to computation [2], abtef
sending raw measurements to be processed by a corfusam
centre we consider distributed schemes, where local decisians ar
made at the sensor nodes. These partial decisions, whiclrenay
quire as little as 1 bit to communicate them, are then fuseteat
fusion centre, or within the network.

In this paper, we consider the simplest case of a single event

occurring at a random time and a random location in the atea
The event remains in the same place for a sufficiently long tso
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that we can confine our attention to the problem of detectiah a
localization of the event. Our aim is to develop algorithnashb

at the sensor level as well as at the fusion centre so that we ca
detect intrusions as early as possible subject to a constraifalse
alarms.

We consider sequential detection procedures in our worke He
each sensor in the network receives a sequence of obsewsvatia
sends a sequence of summary messages to the fusion centesavhe
sequential test is carried out to conclude whether the exanitred
or not. The design objective is to minimize the detectiomgelith
a constraint on some measure of false alarm rate.

Related LiteratureEvent detection in sensor networks has been
extensively studied, starting from the works of Tenny anadgd [3].
Further work on event detection in decentralized setup \ae$ec
out by Tsitsilklis [4]. Ben-David et al. [6] discuss the udenon-
parametric statistics for the event detection in sensavorés. Niu
and Varshney [13] discuss the effect of random number ofr@cti
sensors on the event detection procedures. The CUSUM aproa
was first discussed in statistics by Page [7]. Moustakidgslif3
cusses the CUSUM algorithm for a decentralized setup (wisich
used in sensor networks). Veeravalli [5] discusses an @ptite-
centralized sequential detection procedure. In [1], Pridsand
Kumar consider the additional aspect that the measuremeets
to be transported over a network in which there are multigle a
cess delays. They study the tradeoff between network deldy a
decision delay.

Our Contributions:Based on the nonparametric CUSUM algo-
rithm, we propose two local detector algorithms. A simplsida
rule is proposed. Two variations are proposed for operétieg
detection process after an alarm. For three combinationtisesie
approaches we provide analytical techniques for calagaflse
alarm measures, namely, mean time to false alarm, or thédnac
of time in false alarm. Simulation results are provided tbidede
the analytical techniques that we develop.

2. THE SYSTEM MODEL

n sensors (indexed = 1,...,n) are deployed in an area of
interest, A, according to some deployment methodology, e.g., grid
based deployment, uniform i.i.d. deployment, etc.

The primary aim of the deployed sensors is to detect eveats th
occur in the aread. Events are modeled as energy sources (e.g.,
acoustic or vibration energy) that yield a signal strengtsater



than or equal tdho,min at a reference distanceg. In the region

of deployment there could also exisutter that could be falsely
detected as an intruder (e.g., clutter could comprise samathals

that live in the area). In our model, a single event occursnat a
unknown time, at a random location in the area. We assume that
the event stays in the place for a sufficiently long time, s th
appears to be stationary.

A discrete-time model is considered in this work. All the sen
sors sample their surroundings periodically and obtainqaesece
of measurement$X;, = (X, X7,...,X7) ;k > 1} (k denotes
the sample index). Prior to the change, the samples areéndept
and identically distributed (i.i.d.) across the sensors iaepen-
dently distributed across time, and have 0 mean. After tlaagh,
the samples are (conditionally) independent across tirdespace;
the mean of the observations, however, depends on theqositi
the event.

The samples are processed by the sensors to give localatecisi
{Di,1 < i < n,k > 1}, which can be written as components
of the local decision vectofDy, k > 1}. The local decisions are
forwarded to a fusion centre which maps the local decisitom én
global decisiorDy;os,1 € {0, 1}, with 0 meaning “no change until
k" and 1 meaning “a change has occurred at or befdtre

2.1 The Motivation For . Coverage

The energy from a source decays with distance homogeneously
in every direction, so that a sensor placed at distané®m the
source receives

h(w) = ho p(u)

with p(do) = 1. Also, p(u) decreases with. For example, one
model could be
)

do
U

plu) = e~ 2(u—do) (

with 1 > 1 andas > 0.
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Figure 1: A sample path for the CUSUM statistic with Local
Detector 1. Note the way the Up-state and the Down-state are
defined.

2.2 A Simple Fusion Rule (SFR)

Based on the above idea 6fcoverage, a simple fusion rule at
the fusion centre is to declare a change dte., Dgiop,1 = 1, if

> lpi=ny 2 L
i=1

else, D105, = 0, and continue to make observations. There are
clearly other fusion rules that are easily seen to be béditar the
simple fusion rule proposed above. An improvement is obtain
if we include the sensor location information, or the locatigion
history. However, the analysis of such fusion rules is caxpind

in this paper we confine ourselves to the analysis of the simybé.

@)

3. THE LOCAL DECISION ALGORITHMS

We consider the following nonparametric CUSUM statistic at
each node (the superscript indicating the node index hasdrepped
for notational simplicity)

Sk = (Sk—14+ Xp —b)T with So =0 2

Since we propose to use the nonparametric CUSUM at each sen-The local decision is a 1 &tif S, > ¢. The local threshold (with

sor node (see Section 3), the means of the sensor obses/aton
come important. The sensor output could be biased in suclya wa
that if the source energy received at the sensor drops betluesh-

old (say,hmin), then the sensor output has a negative mean. If an
event of interest has source energy equélde.:» (atdp), then the
measurements will have a positive mean up to the distdnge
giVen by hmln = h(),min p(dmzn)

Hence, the effect of an event will persist (in the sense oitipes
mean of sensor output), up to a distantg;, from the source,
whereas, clutter (whose radiated energy will be substfntess
than that of the event of interest) will only have an effecttom
distance less thad,;, .

Givendin, We say that a point itd is L covered if there are
at leastL sensors at a distance less than or equadl,tg, from that
point. Let the sensors be deployed.nsuch that each point i&
covered. In the case of random deployment, all the pointd in
should bel covered with a high probability.

Thus, if an event occurs at some point4dh at leastl sensors
will receive measurements with a positive mean. On the dthed,
if there is noise or a weak energy source (i.e., clutter) mtespoint,
then less tharl. sensors will make measurements with a positive
mean. If the local detection algorithm at each node is suatittie
sensors trigger faster (by orders of magnitude) if the mdaheo
samples is positive, then, in the case of events, morefthsamsors
will trigger rapidly, else, less thah sensors will be triggered. This
motivatesL to be included as an important design parameter.

which S}, is compared, at each) is denoted by > 0. The bias
parameteb is set so as to obtain a negative mean for the {exm—

b), prior to the change, and a positive mean for that term dfier t
change. Following the discussion in Section 2.1, if an eventirs
at a point inA then for all nodes in a disk of radiuk,;, around
that point, the expectation df,, — b will become positive, driving
the CUSUM statistic at at leagtnodes to increase without bound,
and thus cross the local CUSUM threshold.

In the classical CUSUM procedure, on crossing the threshold
the test is stopped and a decision is made in favor of a chaiaye-
ever, in our case, the CUSUM algorithm is allowed to run fyeel
i.e., it is performed at every node in the region of intetdstven
after some nodes have crossed the threshold. This stemd out o
the need for distributed computation in case of sensor ré&syo
where sensors collaborate in the decision process. Althaug
sensor may cross the threshold early, one needs to waitanil
has “sufficient” information for declaring the change. Irdaibn,

a sensor may cross the threshold because of noise, in whieh ca
the network should continue making observations, whilngthe
falsely triggered CUSUM return to the “untriggered” state.

In the following sections we describe two approaches fongisi
the CUSUM statistic to carry out the local detection.

3.1 Local Detector1 (LD 1)

LD1 evolves as follows.Sy = 0 and we say that the node is in
the Up-state Let 75 denote the random time at which the CUSUM
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Figure 2: A sample path for the CUSUM statistics underL ocal
Detector 2. The shaded region denotes those samples where the
local decision isl.

statistic crosses the threshaldi.e., STS > c while S < ¢ for
0 < k < 75. We then seGTg = c and let the statistic evolve.
We say that the node is in th@own-state starting fromr¢. If the
expectation ofX; — b is positive then with a high probability the
statistic will continue to increase and stay abeveOn the other
hand, if the expectation oX;, — b is negative then the statistic will
return to O with probability 1. We call the Up-state intervals
Up-timesand the Down-state intervals B®wn-times

Fork < 7§, i.e., in the Up-state, the node sends the local deci-
sion Dy, = 0, whereas in the Down-state the node sebgs= 1.

Now, in order to analyse the false alarm performance of tke sy
tem, we consider the situation in which the event never a;aurd,
hence E(X}) = 0 for all k. It is then clear that the end-points of
the Down-times (equivalently, the start-points of the pes) are
renewal instants. Also, since we resgt to ¢ at the ends of Up-
times, it is also clear that the alternating sequence ofitpg and
Down-times constitute an alternating renewal processtheet)p-
times be denoted b{U, k > 1} and the Down-times be denoted
by {Wi,k > 1} (refer to Figure 1).

3.2 Local Detector2 (LD2)

In the second local detector, too, the CUSUM algorithm islenp
mented at each sensor with the statistigseing obtained at each
sensor using Equation (2). However, in LD2 the CUSUM statist
is allowed to free-run, i.e., it is never reset. The localisiea is1
if Sy is above the threshold, irrespective of whetBghad crossed
the threshold earlier. This is shown in Figure 2. Thus thalloc
decisions in LD2 are described as follows. Eaop 0,

|

4. FUSION OPTIONS AND FALSE ALARM
MEASURES

0 Sp<e

1 Sy>c ®)

Once the fusion centre declares a change, we consider the fol

lowing two options for operating the system.

1. Fusion Option 1 (FO1): Reset the system.
The CUSUM statistic is set to 0 at all the sensors and the
count at the fusion centre is resetoln this case, the false
alarm measure is taken to lige mean time to false alarm
(TFA).

. Fusion Option 2 (FO2): Continue the process.
The CUSUM statistic is allowed to run without being reset.
The false alarm measure is taken to be the fraction of time
that the number of sensors with CUSUM statistic greater than
1 is at leastL. This is thefraction of time in false alarm

Table 1: Table of mean Up-time values and the Down-time val-
ues under the null hypothesis when each sensor uses LD1. Here
the biasb = 0.75. Here, Sim stands for the simulation results
and NE stands for the numerical eveluation.

Threshold ARL
Up(Sim) | Up(NE) ]| Down(Sim) | Down(NE)
1.0 18.67 19.03 2.41 2.40
1.25 28.26 28.18 2.72 2.71
1.5 40.78 41.82 3.04 3.03
1.75 62.48 61.92 3.37 3.37
2.0 96.64 91.12 3.72 3.70
(FROTIFA) i.e.,
m—1
Jim — > Ty piysry 4)
k=0

wherel{-} denotes an indicator function.

5. ANALYSIS OF LOCAL DETECTOR 1

From Section 3, it is seen that the local detector can be déwe
terms of an alternating renewal procesé/;,, Wi),k > 1} (the
Uy's are i.i.d.,Wy’s are i.i.d., and thdJ/’s are independent of
Wi's). If the distributions ofU;, and W), are approximately expo-
nential, then the mea§Uy,) , E(W},) are sufficient for the analy-
sis of the Fusion Option 1. The fusion process can then be ledde
as a continuous time Markov chain (CTMC).

For the LD1 and FO1 combination, we are interested in eval-
uating the mean time to false alarm (TFA). Hence, we consider
the situation, in which the event occurs at infinity, i.e.¢ ten-
sor observations are i.i.d. across the sensors and ovey wiitie
E(Xk) — b < 0, for all k. The analysis of TFA begins with the
study of the average run length (ARL) of the CUSUM algorithm
at the node level, followed by relating this ARL to the TFA heét
fusion centre.

We note here that the approximate exponentiality of theibjyed
is related to the results in [10]. The exponentiality of thewh-
time distribution is a heuristic. The results from the apjration
match well with simulations.

5.1 Analysis of the Up-time

In terms of the classical CUSUM statistics, the averageibhe-t
under the null hypothesis, i.eE(Uy), is the ARL. Let the mean
value of the time to cross the threshold wih = s(< ¢) be de-
noted byL¢(s). The following integral equation is easily written
down.

Le(s) =14 Le(0)P(b — s) + /0C Le(v)p(v+b—s)dv (5)

where ®(-) is the cdf of Xj;, and¢(-) is the pdf of X}, (under
the null hypothesis). The ARL is obtained by solving g (s)
and evaluating it at = 0. Equation (5) is a Fredholm integral
equation of the second type. Under the null hypothesisj(gtbe
the standard Gaussian for evérgndk. With this we can solve the
integral equation numerically. We chose the valué ef 0.75 and
allowed the values of the threshaido vary from1.0 to 2.0 in the
steps 0f0.25. The results are tabulated in Table 1.

5.2 Analysis of Down-time

Let L, (s) be the mean time spent in the Down-state if the initial
value of the statistic is(> 0). Using a renewal argument along
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Figure 3: Markov chain for the fusion rule that count L ones in
the area A.

with Equation (2), and with a few algebraic manipulations, ab-
tain:

L,(s)=1 —1—/000 L,(v)¢p(v+b—s)dv

This integral equation is used to evaluate the mean timet §pen
Down-time, i.e.,L, (c¢) which equalsE(W}). For ¢(-) being the
standard Gaussian density, the results are presentedla Tab

6. LD1WITH FUSION OPTION 1

In the previous section, we obtained the mean Up and Down
times in LD1. With the exponential approximation for thetdisu-
tions of the Up-times and Down-times, the combination LD11FO
can be modeled with a CTMC, the analysis of which yields the
mean time to false alarm (TFA).

For notational convenience, defiie= ﬁ i (0) and

Tra as the mean time to false alarm. L®t¢) denote the state
of the fusion statistic at time i.e., N(¢) is incremented by 1 each
time a sensor transitions from Up-state to Down-state, adddre-
mented by 1 is the transition is from Down-state to Up-st&e-
cause of the exponentiality approximation, we can madél) is
the CTMC who transition diagram is shown in Figure 3. When
N(t) = L — 1, and another sensor’s local decision becomes 1,
the fusion centre declares that a change has been detect¢ldean
system is reset.

Since we have the null hypothesis, each transition ffom1 to
0 is false alarm. Let(m),0 < m < L — 1, denote the stationary
probability distribution of the this CTMC. We observe thia¢ trate
of false alarms isr.—1(n — (L — 1))&. The instants when these
false alarms occur are renewal instants. Hence, by the atanye
renewal theorem, we conclude that

1
mr—1(n— (L —1))§
The termr_; is calculated by solving the equatiornQ =

where the matrix is the transition rate matrix.
Solving formr—1, we obtain

(6)

Vv =

@)

Tra =

1
(n—(Lfl))

n—i

®)

TL—1 =

Yico i
(i+1) l

where,yi+1 =1+ Yitnt)e andfyo =1.
Numerical Resultsn = 1000 sensors were deployed . L was

chosen to bel0. At each sample instant, each sensor receives a in the processV(t).

sample of the standard Gaussian distribution. The CUSUM-alg
rithm was implemented for two different values bof= 0.75, 1.
Numerical results were The results are plotted in Figure 4.
Observations:

The analytical and simulation results match well, thusifyisig
the exponentiality approximation made above. Note thaythgis

—#—Markov Chain Analysis

-8~ Simulation Results

’
.
[)
.
’
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Time to False Alarm
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Figure 4. Tra vs. the threshold ¢ for Local Detector 1 at
the sensors and with the Fusion Optionl at the fusion cen-
tre, for two bias values,b = 1.0,0.75. Note that the y-axis is
log,o(Tra).
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Figure 5: The M /G /oo model of the fusion count with LD1
and Fusion Option 2.

is in the log scale to the base 10. FHaf4 = 10° samples, we can
read off the bias and threshold pairs &:= 0.75, ¢ = 2.6) and

(b = 1.0,c¢ = 1.75). If the sampling interval is 10 seconds, then
Tra = 10° corresponds to a average false alarm rate of 1 every
11 days. For a small change in the value of the thresholthere

is a large change in the mean time to false alarm. This inelcat
that the design is quite sensitive to the value:.ofn fact, the rate
of change is larger for larger values of bias,Thus, the user has
finer control ovefl's 4 with smaller values of the bias. We also see
that a small change in the value of the bias (fromb to 1) led to

a large change in the value of(for the same value of TFA). This
reflects that the design is sensitive to the bias value.

7. LD1 WITH FUSION OPTION 2

As seen in Section 3, with LD1, there aeéindependent alter-
nating renewal process. The fusion centre maintains arfuiant
N(t) which is incremented at and Up to Down transition at a sen-
sor, and decremented at a Down to Up transition. We are sitte
The Up to Down transitions at each sensor
yields a point process. Each such transition causes the &6
to increase. Sincé < n the aggregate rate of such transitions
does not change much even if some sensors are already inwre Do
state. Further, we approximate the superposition of theise pro-
cesses with a Poisson process. Combining these two apmexim
tions, we model the aggregate process of Up to Down transitio
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Figure 6: FROTIFA (on a log scale) vs. the threshold,c,
for Local Detector 1 at the sensors with Fusion Option 2,
for two bias values, b 1.0,0.75. Note that the y-axis is
—log(FROTIFA).

by a Poisson process of rate

n
1 1
ety

Aq ~ 9)
We then see tha¥ (¢) is the same as the number of customers in an
M /G /oo queue, with arrival rateg and holding time distribution
the same at that of the Down time, i.¢., This model can thus be
represented as shown in the Figure 5.

We now seek th&action of time in false alarnfFROTIFA). It is
well known that the stationary distribution &f(¢) is Poisson with

meanATQ. It then follows that FROTIFA is given by

(10)

Numerical Results:Again we taken = 1000, andL = 40. Under

the null hypothesis the samples are taken to be standardsiaaus
Each sensor runs the LD1 algorithm. The FROTIFA values were
evaluated for the bias valués= 0.75, 1. The analysis and simula-
tion results are plotted in Figure 6. We observe that theltsate
very similar to those for LD1 and Fusion Option 1, wil 4 as the
false alarm measure.

8. ANALYSIS OF LOCAL DETECTOR 2

In this section we consider the use of LD2 in the sensor, along
with Fusion Option 2. As explained earlier, the false alaream
sure is FROTIFA. The theory of large deviations helps usteela
the FROTIFA measure to tHeaction of time above threshol@O-
TAT) measure at each sensor. A target value of FROTIFA yields a
target FOTAT. Once a target FOTAT is available, the varicesigh
parameters like bias, and the threshola;, can be evaluated.

8.1 Analysis of LD2 to Obtain FOTAT

In this section, we assume that a bouadpn the FOTAT at a
local detector is available to the user (the next sectiofsdgih
the procedure to obtaig). The problem then is to relate the bias,
b, and thresholdg, at a sensor to the target FOTAT value. We use
Chernoff’s bound and the affine approximation given by Eievet
al. [11] to carry out the analysis. Since we are concernedlgpai
with false alarm analysis, it suffices to analyse the CUSUMtpss
at any one sensor. Hence, as before, we drop the sensor imdex i
the notation.

Ina

Slope =

InPr(S >c)

Figure 7: Typical plot of In Pr(S > c¢) along with a linear
bound and an affine approximation.

In LD2 the CUSUM process is not stopped but is allowed to
freely evolve based on the measurements. Thus we are it@eéres
in analyzing the stochastic proceSs, k& > 0, defined by Equa-
tion (2), where theX;,k > 1, are i.i.d. withE(Xy) — b < 0.

By unraveling the CUSUM recursion we easily obtain an altn
expression for the process. .

zn: X, — kb)

j=(n+1)—k

8.1.1 Using Chernoff’'s Bound

In this section, we use the Chernoff’'s bound to obtain an uppe
bound on the fraction of time during whic#, > ¢. Using Equa-
tion (11) and the union bound, along with Chernoff’'s bounaij a
observing that under the null hypothesis tkig, j > 1, are i.i.d.,
for anyd > 0, we have

Sp = max (
0<k<n

(11)

Pr(Sg>c)<e Zek(r(e)_%) (12)
k=0

wherel'(0) = In E(e?*1). If
') < ob

then as the sample indéxgoes to infinity, it is seen that the sum-
mation in Equation (12) converges to a constant,/Safience, for
large values ok, we can write

Pr(Sk >c¢) < Ke ?°

In the steady state, writing the marginal of the stationamsion of
the process aS$, we get the following.

Pr(S>c¢) < Ke

Evidently, to obtain the best bound, we can téke 7(b) such that
La®) — p, thus yielding the following bound on FOTAT at any

n(b)
sensor, under the null hypothesis.

Pr(S > c) < Ke "¢ (13)

Now one approximation is to tak€ ~ 1. Then there exists a
linear relationship betweelm(Pr(S > ¢)) and the threshold.
This is plotted as the dashed line in Figure 7.

As before, we let the samples come from a standard Gaussian
distribution. ThenI'(#) = 16°c. Using this expression and the
definition of n(b), we obtainn(b) . Setting the bound in
Equation (13) equal te, we obtainn(b) —1“75, yielding the
following relation betweem, ¢ and the the FOTAT bound,

2
g

be = —7lne

_ 2
- 2



Table 2: Results for Local Detector 2 showing FOTAT obtained

for various values ofc with b = 0.75.

Threshold| Simulations| Chernoff Bound| Affine (Elwalid)
c €sim €Cher CAf fBIw
1.8 0.0285 0.0672 0.0270
1.9 0.0246 0.0578 0.0232
2.0 0.0213 0.0498 0.0200
2.1 0.0181 0.0429 0.0172
2.2 0.0158 0.0369 0.0148
2.3 0.0135 0.0317 0.0127
2.4 0.0115 0.0273 0.0109
2.5 0.0100 0.0235 0.0094

8.1.2 Using an Affine Approximation

As seen from Figure 7 the linear approximation could be quite
loose. A more accurate model can be obtained from the affine ap
proximation due to Elwalid et al. [11]. The approximation is

Pr(S > ¢) ~ age "®)° (14)

whereao is approximated as the probability that a single sample
exceeds the bias. If the samples come from a standard noisaal d
tribution, we have

o _2

¢ 22
bV 27

8.1.3 Simulation Setup and Results

We consider a single sensor receiving a sequence of i.implsa
that have the standard Gaussian distribution. The sinonisitivere
allowed to run for a long time (typically0® samples or more), as
compared to the reciprocal efvalues. The results are presented in
Table 2.

8.1.4 Observations

Itis seen from the table that the results obtained usingiifis
bound fare poorly and that the affine approximation is quibse
to the simulation results. Hence, we make use of only theeaffin
approximation in our work.

8.2 Analysis of the Fraction of Time in False
Alarm (FROTIFA)

We now show how obtain the overall FROTIFA for the Fusion
Option 2, with LD2 at each sensor. We make use of results from
the theory of large deviations. We begin by using Crameenth
rem, following it with the Bahadur-Rao approximation. Weneo
clude this section with simulation results to compare theseap-
proaches.

a0 = Pr(X >b) ~ (15)

8.2.1 Using Cramer’s Theorem

The sensor level decision procesggis are independent 0-1 for
each of which the fraction of time spent in State 1 beinthe FO-
TAT. Let D?, 1 < i < n, denote the steady state marginal random
variables for then sensors; these are i.i.d. Bernoulli, with proba-
bility of state 1 beings. Since we use the Fusion Option 2, sensor
processes are not reset on a global alarm, and the false ialeam
sure is FROTIFA, which is given byr(3""_ ; D > an), where
we have defined = L.
Define the quantities :

M(9) = E(eeDl) l(a) = sgp(ﬁa —log M(0))

Using Cramer’s theorem, we can easily show that:

=6~ Simulations a
10- - Eps(sim)+BR oA 4

—+— Elwalid(approx)+BR

- % - Elwalid(approx)+Cram

—\ogm(Fracnon of time in False Alarm)

21
Threshold (c)

Figure 8: Results for Local Detector 2 with Fusion Option 2.
(—log,, FROTIFA) is plotted for different values of the thresh-
old ¢; b = 0.75. Results from simulations and various approxi-
mations are shown.

Pr(z D' >an) < e ™M@ (16)
=1

For Bernoulli random variables, the following expressisniell
known.

=

— €

l(a) = alog(%) +(1-a) log(i

8.2.2 Using the Bahadur-Rao approximation

We will see that conservative results are obtained due taphe
plication of Cramer’s theorem. In this section, we investiga bet-
ter result, namely, the Bahadur-Rao approximation [12}; tian be
used instead of the Chernoff's bound. The Bahadur-Rao &ppro
mation is given as follows:

1
0(a)v2mn~/M" (0(a))

whered(a) achieves the supremumsnp,, (fa — In M (0)).

Pr(> D' >na) = e "M@ (17)
=0

8.2.3 Simulation Results

In our simulations, we choose the following parameters=
1000, L = 40, b = 0.75. The samples were i.i.d. with standard
Gaussian distribution. The simulations were run for a lomgation
(on the order ofl0° samples) and compared with the analytical
expressions. See Figure 8.

8.2.4 Observations

We observe that the FROTIFA is quite sensitive to the valdies o
threshold. Note the log scale on theaxis. We observe that when
the value ofe is available (through simulation) and the Bahadur-
Rao approximation is used to analyse the fusion rule, thel-res
tant values of FROTIFA match with those obtained entiretptigh
simulations (middle two curves). This shows that the Bahd&®AD
approximation is excellent for analyzing the process atftiséeon
centre.

However, if we take the FOTATe] from the affine approxima-
tions used at the fusion centre, the design turns out to bhtkfi
optimistic (the top curve). This can be attributed to theirotic
design at the sensor level (see the last column in Table 2rewhe
where the epsilon values are smaller than those actualbjirmat
(first column)).



Table 3: Design using LD1 and FOL1, for user defined TFA.

TFAyser LD1 with FO1

Samples [ Threshold (c)[ Design Result (TFA)
107 2.54 2 x 10%

5 x 10* 2.6 6.3 x 10*

10° 2.63 2 x 10°

5 x 10° 2.67 6.34 x 10°

10° 2.7 1.48 x 10°

9. ADESIGN EXAMPLE

The user defines the objective in terms of the mean time te fals
alarm, which encapsulates the user’s ability to pay a pocéalse
alarms. However, if a very stringent false alarm object&/epeci-
fied then there could be a large detection delay.

9.1 Converting the User-defined TFA constraint
to the FROTIFA constraint

The user defined constraint for false alarms will typically b
given in the form of the mean time to false alarm (TFA). Howeve
for analyzing the Fusion Optio (Section 4)), it is convenient to
pose the false alarm constraint in terms of FROTIFA. If, urttie
null hypothesis, the mean time spent in false alarm is mucilem
than the mean time to false alarm (a reasonable assumptiwadn
tice), then the following approximation is obtained

1
FROTIFA =~ TFA

We use this approximation in our design example.

9.2 A Design Example

The values ofi, L and the bia$ are related through the event
model, the model for propagation of the sensing modality tived
sensor response model.
means and provide the design of the CUSUM threshold at the sen
sors. The analysis procedures discussed in Sections 6, 8 anel
used to obtain the value of the thresheld he values ofi = 1000,

L = 40 andb = 0.75 were chosen for this example.

9.2.1 Using LD1 and Fusion Option 1

The mean time to false alarm is obtained for the algorithnm tha
uses LD1 and Fusion Optiohusing Equation (7). The parame-
tersb, c are implicit in Equation (7) (through—; and&). How-
ever, evaluating the threshold directly from the above ggnas
not possible as the integral equations involved do not hksed
form solutions. Hence, we need to resort to charts (similafid)-
ure 4). We present the results of the design in Table 3.

9.3 Using the LD1 and Fusion Option 2

This approach too makes use of the parametensdy for eval-
uating the false alarm constraint. Hence, we can evaluatpdh
rameter paib, c using charts like Figure 6. We present the results
of the design in Table 4.

9.4 Using the LD2 and Fusion Option 2

Table 4: Design using LD1 and FO2, for user defined TFA.

Samples | FROTIFA-aimed]| Threshold (c)] Design(TFA)
107 1077 2.42 2 x 10%

5 x 10* 2x107° 2.47 1.1 x 10°
10° 107° 2.5 2.2 x 10°

5 x 10° 2x107° 2.54 1.2 x 10°
108 106 2.58 2.51 x 10°

Table 5: Design using LD2 and FO2, for user defined TFA.

Samples | FROTIF Atarge: | Threshold| Design TFA
10% 10~% 1.97 4% 10°

5 x 10* 2x107* 2.01 1.4 x 10*
10° 10~° 2.04 4 x 10*

5 x 10° 2x 107 2.07 1.2 x 10°
10° 10=6 2.1 3% 10°

9.5 Discussion

From Tables 3 and 4 we conclude that the analytical apprsache
we have developed for LD1+FO1 and for LD1+FO2 result in a
slightly conservative design. The TFA actually obtainedlightly
larger than the user specification. On the other hand froneTab
we conclude that the affine approximation and Bahadur-Rao ap
proximation based approach for analyzing LD2+FO2 yieldga d
sign that provides a smaller TFA than the user requiremergath
case it is seen that the TFA is very sensitive to the threshcds
observed earlier in the paper.

10. DETECTION DELAY: SIMULATION RE-
SULTS

We have only the simulation results for the detection delsyes
deployn = 1000 sensors in the area of interest in a grid fash-
ion. The event occurs at a random place (chosen using theromif
distribution), and at random time (chosen geometricallthwtie
parametepp = 0.0005). The coverage parameter was chosen to
be L = 40. For the post-change distributions, the valueg.gé
were calculated ag; b*d’fi“" where,dmin = 0.1 Km andd; is

d
the distance of th¢® sensor from the event. We chose the values
of b = 0.75 or 1 for our simulations. The results are presented in
Figure 6.
It is seen that the mean detection delay is in the order of a few
samples (0.5 to 2) for the values of threshold that gave thenme
time to false alarm of the order af)> — 107 samples.

We assume these as obtained by other

11. CONCLUSION

We formulated an event detection problem with a user-defined
objective of mean time to false alarm, TFA. For this problewe,

Table 6: Detection delay. Here, thr stands for threshold, DD

We make use of the affine approximation at the sensor level and stands for Detect Delay, and LE stands for local decisior with

the Bahadur-Rao approximation at the fusion centre. Thaeaffi
approximation was used to obtain the sensor level time atiwe
thresholdke.

Using the user-defin€fir 4, we can obtain the parametefrom
the Bahadur-Rao approach. For our case,cthed the threshold
are related using Eqn(15). Thus, we can directly obtain tieev
of the threshold. We present the results of the design ineTabl

fusion rule ¢
[ Bias | Thr(LF1) | DD(LF1) | Thresh (LR) | DD(LF2) |
0.75 | 2.6 1.13 1.7 1.02
0.75 | 2.7 1.17 1.75 1.2
0.75 | 2.75 1.45 1.8 1.39
0.75 | 2.8 1.54 1.85 1.65
0.75 | 2.9 1.8 1.9 1.66




explored three different approaches based on CUSUM based lo
cal detectors at each sensor, and fusion of these localiolesiat
a fusion centre. Our main contribution was to develop aicait
techniques for setting the CUSUM threshold for achievireyttr-
get TFA. Simulation results were presented to demonst@atetur
techniques work in a design example.

Our future work includes the study of an optimal parametise d
tributed detection scheme within the same framework. Als®,
will study ways to design the other parameters, he L., andb.
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