
CUSUM Based Distributed Detection in WSNs

Mandar Nadgir
Member of Technical Staff

Computational Reseach Labs
Pune, India

mandar@crlindia.com

K. Premkumar
Department of Electrical

Communication Engineering
Indian Institute of Science

Bangalore, India
kprem@ece.iisc.ernet.in

Anurag Kumar
Department of Electrical

Communication Engineering
Indian Institute of Science

Bangalore, India
anurag@ece.iisc.ernet.in

Joy Kuri
Centre for Electronics Design

and Technology
Indian Institute of Science

Bangalore, India
kuri@cedt.iisc.ernet.in

ABSTRACT
We are concerned with the situation in which a wireless sensor net-
work is deployed in a region, for the purpose of detecting an event
occurring at a random time and at a random location. The sensor
nodes periodically sample their environment (e.g., for acoustic en-
ergy), process the observations (in our case, using a CUSUM-based
algorithm) and send alocal decision(which is binary in nature) to
the fusion centre. The fusion centre collects these local decisions
and uses afusion ruleto process the sensors’ local decisions and
infer the state of nature, i.e., if an event has occurred or not. Our
main contribution is in analyzing two local detection rulesin com-
bination with a simple fusion rule. The local detection algorithms
are based on the nonparametric CUSUM procedure from sequential
statistics. We also propose two ways to operate the local detectors
after an alarm. These alternatives when combined in variousways
yield several approaches. Our contribution is to provide analytical
techniques to calculate false alarm measures, by the use of which
the local detector thresholds can be set. Simulation results are pro-
vided to evaluate the accuracy of our analysis. As an illustration
we provide a design example. We also use simulations to compare
the detection delays incurred in these algorithms.

Keywords
event detection in wireless sensor networks, distributed detection
of a change in distribution, nonparametric CUSUM technique

1. INTRODUCTION
Sensor networks are used to efficiently monitor the area theyare

deployed in, and to help in detecting events so that remedialor cor-
rective measures can be taken. This paper focuses on the study of
sequential event detectionor sequential change detectionin sen-
sor networks. Since the cost of communication, in terms of battery
consumption, is large as compared to computation [2], instead of
sending raw measurements to be processed by a commonfusion
centre, we consider distributed schemes, where local decisions are
made at the sensor nodes. These partial decisions, which mayre-
quire as little as 1 bit to communicate them, are then fused atthe
fusion centre, or within the network.

In this paper, we consider the simplest case of a single event
occurring at a random time and a random location in the areaA.
The event remains in the same place for a sufficiently long time, so

that we can confine our attention to the problem of detection and
localization of the event. Our aim is to develop algorithms both
at the sensor level as well as at the fusion centre so that we can
detect intrusions as early as possible subject to a constraint on false
alarms.

We consider sequential detection procedures in our work. Here,
each sensor in the network receives a sequence of observations and
sends a sequence of summary messages to the fusion centre where a
sequential test is carried out to conclude whether the eventoccured
or not. The design objective is to minimize the detection delay with
a constraint on some measure of false alarm rate.

Related Literature:Event detection in sensor networks has been
extensively studied, starting from the works of Tenny and Sandell [3].
Further work on event detection in decentralized setup was carried
out by Tsitsilklis [4]. Ben-David et al. [6] discuss the use of non-
parametric statistics for the event detection in sensor networks. Niu
and Varshney [13] discuss the effect of random number of active
sensors on the event detection procedures. The CUSUM approach
was first discussed in statistics by Page [7]. Moustakides [8] dis-
cusses the CUSUM algorithm for a decentralized setup (whichis
used in sensor networks). Veeravalli [5] discusses an optimal de-
centralized sequential detection procedure. In [1], Prasanthi and
Kumar consider the additional aspect that the measurementsneed
to be transported over a network in which there are multiple ac-
cess delays. They study the tradeoff between network delay and
decision delay.

Our Contributions:Based on the nonparametric CUSUM algo-
rithm, we propose two local detector algorithms. A simple fusion
rule is proposed. Two variations are proposed for operatingthe
detection process after an alarm. For three combinations ofthese
approaches we provide analytical techniques for calculating false
alarm measures, namely, mean time to false alarm, or the fraction
of time in false alarm. Simulation results are provided to validate
the analytical techniques that we develop.

2. THE SYSTEM MODEL
n sensors (indexedi = 1, . . . , n) are deployed in an area of

interest,A, according to some deployment methodology, e.g., grid
based deployment, uniform i.i.d. deployment, etc.

The primary aim of the deployed sensors is to detect events that
occur in the areaA. Events are modeled as energy sources (e.g.,
acoustic or vibration energy) that yield a signal strength greater



than or equal toh0,min at a reference distanced0. In the region
of deployment there could also existclutter that could be falsely
detected as an intruder (e.g., clutter could comprise smallanimals
that live in the area). In our model, a single event occurs at an
unknown time, at a random location in the area. We assume that
the event stays in the place for a sufficiently long time, so that it
appears to be stationary.

A discrete-time model is considered in this work. All the sen-
sors sample their surroundings periodically and obtain a sequence
of measurements

˘

Xk =
`

X1
k , X2

k , . . . , Xn
k

´

; k ≥ 1
¯

(k denotes
the sample index). Prior to the change, the samples are independent
and identically distributed (i.i.d.) across the sensors and indepen-
dently distributed across time, and have 0 mean. After the change,
the samples are (conditionally) independent across time and space;
the mean of the observations, however, depends on the position of
the event.

The samples are processed by the sensors to give local decisions
{Di

k, 1 ≤ i ≤ n, k ≥ 1}, which can be written as components
of the local decision vector,{Dk, k ≥ 1}. The local decisions are
forwarded to a fusion centre which maps the local decision into a
global decisionDglob,k ∈ {0, 1}, with 0 meaning “no change until
k” and1 meaning “a change has occurred at or beforek”.

2.1 The Motivation For L Coverage
The energy from a source decays with distance homogeneously

in every direction, so that a sensor placed at distanceu from the
source receives

h(u) = h0 ρ(u)

with ρ(d0) = 1. Also, ρ(u) decreases withu. For example, one
model could be

ρ(u) = e−α2(u−d0)

„

d0

u

«α1

with α1 > 1 andα2 > 0.
Since we propose to use the nonparametric CUSUM at each sen-

sor node (see Section 3), the means of the sensor observations be-
come important. The sensor output could be biased in such a way
that if the source energy received at the sensor drops below athresh-
old (say,hmin), then the sensor output has a negative mean. If an
event of interest has source energy equal toh0,min (atd0), then the
measurements will have a positive mean up to the distancedmin

given by:hmin = h0,min ρ(dmin).
Hence, the effect of an event will persist (in the sense of positive

mean of sensor output), up to a distancedmin from the source,
whereas, clutter (whose radiated energy will be substantially less
than that of the event of interest) will only have an effect upto a
distance less thandmin.

Givendmin, we say that a point inA is L covered, if there are
at leastL sensors at a distance less than or equal todmin from that
point. Let the sensors be deployed inA such that each point isL
covered. In the case of random deployment, all the points inA
should beL covered with a high probability.

Thus, if an event occurs at some point inA, at leastL sensors
will receive measurements with a positive mean. On the otherhand,
if there is noise or a weak energy source (i.e., clutter) at some point,
then less thanL sensors will make measurements with a positive
mean. If the local detection algorithm at each node is such that the
sensors trigger faster (by orders of magnitude) if the mean of the
samples is positive, then, in the case of events, more thanL sensors
will trigger rapidly, else, less thanL sensors will be triggered. This
motivatesL to be included as an important design parameter.
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Figure 1: A sample path for the CUSUM statistic with Local
Detector 1. Note the way the Up-state and the Down-state are
defined.

2.2 A Simple Fusion Rule (SFR)
Based on the above idea ofL coverage, a simple fusion rule at

the fusion centre is to declare a change atk, i.e.,Dglob,k = 1, if

n
X

i=1

I{Di
k
=1} ≥ L (1)

else,Dglob,k = 0, and continue to make observations. There are
clearly other fusion rules that are easily seen to be better than the
simple fusion rule proposed above. An improvement is obtained
if we include the sensor location information, or the local decision
history. However, the analysis of such fusion rules is complex and
in this paper we confine ourselves to the analysis of the simple rule.

3. THE LOCAL DECISION ALGORITHMS
We consider the following nonparametric CUSUM statistic at

each node (the superscript indicating the node index has been dropped
for notational simplicity)

Sk = (Sk−1 + Xk − b)+ with S0 = 0 (2)

The local decision is a 1 atk if Sk ≥ c. The local threshold (with
which Sk is compared, at eachk) is denoted byc > 0. The bias
parameterb is set so as to obtain a negative mean for the term(Xn−
b), prior to the change, and a positive mean for that term after the
change. Following the discussion in Section 2.1, if an eventoccurs
at a point inA then for all nodes in a disk of radiusdmin around
that point, the expectation ofXn − b will become positive, driving
the CUSUM statistic at at leastL nodes to increase without bound,
and thus cross the local CUSUM threshold.

In the classical CUSUM procedure, on crossing the threshold,
the test is stopped and a decision is made in favor of a change.How-
ever, in our case, the CUSUM algorithm is allowed to run freely,
i.e., it is performed at every node in the region of interestA even
after some nodes have crossed the threshold. This stems out of
the need for distributed computation in case of sensor networks,
where sensors collaborate in the decision process. Although one
sensor may cross the threshold early, one needs to wait untilone
has “sufficient” information for declaring the change. In addition,
a sensor may cross the threshold because of noise, in which case
the network should continue making observations, while letting the
falsely triggered CUSUM return to the “untriggered” state.

In the following sections we describe two approaches for using
the CUSUM statistic to carry out the local detection.

3.1 Local Detector1 (LD 1)
LD1 evolves as follows.S0 = 0 and we say that the node is in

theUp-state. Let τ c
0 denote the random time at which the CUSUM
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Figure 2: A sample path for the CUSUM statistics underLocal
Detector 2. The shaded region denotes those samples where the
local decision is1.

statistic crosses the thresholdc, i.e., Sτc
0

≥ c while Sk < c for
0 ≤ k < τ c

0 . We then setSτc
0

= c and let the statistic evolve.
We say that the node is in theDown-state, starting fromτ c

0 . If the
expectation ofXk − b is positive then with a high probability the
statistic will continue to increase and stay abovec. On the other
hand, if the expectation ofXk − b is negative then the statistic will
return to 0 with probability 1. We call the Up-state intervals as
Up-timesand the Down-state intervals asDown-times.

For k ≤ τ c
0 , i.e., in the Up-state, the node sends the local deci-

sionDk = 0, whereas in the Down-state the node sendsDk = 1.
Now, in order to analyse the false alarm performance of the sys-

tem, we consider the situation in which the event never occurs, and,
hence,E(Xk) = 0 for all k. It is then clear that the end-points of
the Down-times (equivalently, the start-points of the Up-times) are
renewal instants. Also, since we resetSk to c at the ends of Up-
times, it is also clear that the alternating sequence of Up-times and
Down-times constitute an alternating renewal process. Letthe Up-
times be denoted by{Uk, k ≥ 1} and the Down-times be denoted
by {Wk, k ≥ 1} (refer to Figure 1).

3.2 Local Detector2 (LD2)
In the second local detector, too, the CUSUM algorithm is imple-

mented at each sensor with the statisticsSk being obtained at each
sensor using Equation (2). However, in LD2 the CUSUM statistic
is allowed to free-run, i.e., it is never reset. The local decision is1
if Sk is above the threshold, irrespective of whetherSk had crossed
the threshold earlier. This is shown in Figure 2. Thus the local
decisions in LD2 are described as follows. Fork ≥ 0,

Dk =



0 Sk < c
1 Sk ≥ c

(3)

4. FUSION OPTIONS AND FALSE ALARM
MEASURES

Once the fusion centre declares a change, we consider the fol-
lowing two options for operating the system.

1. Fusion Option 1 (FO1): Reset the system.
The CUSUM statistic is set to 0 at all the sensors and the
count at the fusion centre is reset to0. In this case, the false
alarm measure is taken to bethe mean time to false alarm
(TFA).

2. Fusion Option 2 (FO2): Continue the process.
The CUSUM statistic is allowed to run without being reset.
The false alarm measure is taken to be the fraction of time
that the number of sensors with CUSUM statistic greater than
1 is at leastL. This is thefraction of time in false alarm

Table 1: Table of mean Up-time values and the Down-time val-
ues under the null hypothesis when each sensor uses LD1. Here
the bias b = 0.75. Here, Sim stands for the simulation results
and NE stands for the numerical eveluation.

Threshold ARL
Up(Sim) Up(NE) Down(Sim) Down(NE)

1.0 18.67 19.03 2.41 2.40
1.25 28.26 28.18 2.72 2.71
1.5 40.78 41.82 3.04 3.03
1.75 62.48 61.92 3.37 3.37
2.0 96.64 91.12 3.72 3.70

(FROTIFA), i.e.,

lim
m→∞

1

m

m−1
X

k=0

I{(
P

n
i=1

Di
k
)≥L} (4)

whereI{·} denotes an indicator function.

5. ANALYSIS OF LOCAL DETECTOR 1

From Section 3, it is seen that the local detector can be viewed in
terms of an alternating renewal process{(Uk, Wk), k ≥ 1} (the
Uk ’s are i.i.d.,Wk ’s are i.i.d., and theUk ’s are independent of
Wk ’s). If the distributions ofUk andWk are approximately expo-
nential, then the meansE(Uk) , E(Wk) are sufficient for the analy-
sis of the Fusion Option 1. The fusion process can then be modeled
as a continuous time Markov chain (CTMC).

For the LD1 and FO1 combination, we are interested in eval-
uating the mean time to false alarm (TFA). Hence, we consider
the situation, in which the event occurs at infinity, i.e., the sen-
sor observations are i.i.d. across the sensors and over time, with
E(Xk) − b < 0, for all k. The analysis of TFA begins with the
study of the average run length (ARL) of the CUSUM algorithm
at the node level, followed by relating this ARL to the TFA at the
fusion centre.

We note here that the approximate exponentiality of the Up-times
is related to the results in [10]. The exponentiality of the Down-
time distribution is a heuristic. The results from the approximation
match well with simulations.

5.1 Analysis of the Up-time
In terms of the classical CUSUM statistics, the average Up-time

under the null hypothesis, i.e.,E(Uk), is the ARL. Let the mean
value of the time to cross the threshold withS0 = s(< c) be de-
noted byLξ(s). The following integral equation is easily written
down.

Lξ(s) = 1 + Lξ(0)Φ(b − s) +

Z c

0

Lξ(v)φ(v + b − s)dv (5)

whereΦ(·) is the cdf ofXk, andφ(·) is the pdf ofXk (under
the null hypothesis). The ARL is obtained by solving forLξ(s)
and evaluating it ats = 0. Equation (5) is a Fredholm integral
equation of the second type. Under the null hypothesis, letφ(·) be
the standard Gaussian for everyi andk. With this we can solve the
integral equation numerically. We chose the value ofb = 0.75 and
allowed the values of the thresholdc to vary from1.0 to 2.0 in the
steps of0.25. The results are tabulated in Table 1.

5.2 Analysis of Down-time
Let Lν(s) be the mean time spent in the Down-state if the initial

value of the statistic iss(> 0). Using a renewal argument along
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Figure 3: Markov chain for the fusion rule that count L ones in
the areaA.

with Equation (2), and with a few algebraic manipulations, we ob-
tain:

Lν(s) = 1 +

Z ∞

0

Lν(v)φ(v + b − s) dv (6)

This integral equation is used to evaluate the mean time spent in
Down-time, i.e.,Lν(c) which equalsE(Wk). For φ(·) being the
standard Gaussian density, the results are presented in Table 1.

6. LD1 WITH FUSION OPTION 1
In the previous section, we obtained the mean Up and Down

times in LD1. With the exponential approximation for the distribu-
tions of the Up-times and Down-times, the combination LD1 FO1
can be modeled with a CTMC, the analysis of which yields the
mean time to false alarm (TFA).

For notational convenience, defineξ = 1
Lξ(0)

, ν = 1
Lν (0)

and

TF A as the mean time to false alarm. LetN(t) denote the state
of the fusion statistic at timet; i.e.,N(t) is incremented by 1 each
time a sensor transitions from Up-state to Down-state, and is decre-
mented by 1 is the transition is from Down-state to Up-state.Be-
cause of the exponentiality approximation, we can modelN(t) is
the CTMC who transition diagram is shown in Figure 3. When
N(t) = L − 1, and another sensor’s local decision becomes 1,
the fusion centre declares that a change has been detected and the
system is reset.

Since we have the null hypothesis, each transition fromL− 1 to
0 is false alarm. Letπ(m), 0 ≤ m ≤ L − 1, denote the stationary
probability distribution of the this CTMC. We observe that the rate
of false alarms isπL−1(n − (L − 1))ξ. The instants when these
false alarms occur are renewal instants. Hence, by the elementary
renewal theorem, we conclude that

TF A =
1

πL−1(n − (L − 1))ξ
(7)

The termπL−1 is calculated by solving the equationπQ = 0,
where the matrixQ is the transition rate matrix.

Solving forπL−1, we obtain

πL−1 =
1

PL−1
i=0 (n−(L−1)

n−i
)γi

(8)

where,γi+1 = 1 + γi
(i+1)ν
(n−i)ξ

andγ0 = 1.
Numerical Results:n = 1000 sensors were deployed inA. L was
chosen to be40. At each sample instant, each sensor receives a
sample of the standard Gaussian distribution. The CUSUM algo-
rithm was implemented for two different values ofb = 0.75, 1.
Numerical results were The results are plotted in Figure 4.
Observations:

The analytical and simulation results match well, thus justifying
the exponentiality approximation made above. Note that they-axis

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

1

2

3

4

5

6

7

8

Threshold (c)

T
im

e 
to

 F
al

se
 A

la
rm

Markov Chain Analysis

Simulation Results

  b = 1.0    b = 0.75

Figure 4: TF A vs. the threshold c for Local Detector 1 at
the sensors and with the Fusion Option1 at the fusion cen-
tre, for two bias values,b = 1.0, 0.75. Note that the y-axis is
log10(TF A).

Arrival rate Mean time spent in Service ν1/( )λ( )

Infinite Servers

λ = 
n

( () )1/ 1/ξ ν+

Figure 5: The M/G/∞ model of the fusion count with LD1
and Fusion Option 2.

is in the log scale to the base 10. ForTF A = 105 samples, we can
read off the bias and threshold pairs as:(b = 0.75, c = 2.6) and
(b = 1.0, c = 1.75). If the sampling interval is 10 seconds, then
TF A = 105 corresponds to a average false alarm rate of 1 every
11 days. For a small change in the value of the threshold,c, there
is a large change in the mean time to false alarm. This indicates
that the design is quite sensitive to the value ofc. In fact, the rate
of change is larger for larger values of bias,b. Thus, the user has
finer control overTF A with smaller values of the bias. We also see
that a small change in the value of the bias (from0.75 to 1) led to
a large change in the value ofc (for the same value of TFA). This
reflects that the design is sensitive to the bias value.

7. LD1 WITH FUSION OPTION 2
As seen in Section 3, with LD1, there aren independent alter-

nating renewal process. The fusion centre maintains a fusion count
N(t) which is incremented at and Up to Down transition at a sen-
sor, and decremented at a Down to Up transition. We are interested
in the processN(t). The Up to Down transitions at each sensor
yields a point process. Each such transition causes the count N(t)
to increase. SinceL ≪ n the aggregate rate of such transitions
does not change much even if some sensors are already in the Down
state. Further, we approximate the superposition of these point pro-
cesses with a Poisson process. Combining these two approxima-
tions, we model the aggregate process of Up to Down transitions
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Figure 6: FROTIFA (on a log scale) vs. the threshold,c,
for Local Detector 1 at the sensors with Fusion Option 2,
for two bias values, b = 1.0, 0.75. Note that the y-axis is
− log(FROTIFA).

by a Poisson process of rate

λQ ≈ n
1
ξ

+ 1
ν

(9)

We then see thatN(t) is the same as the number of customers in an
M/G/∞ queue, with arrival rateλQ and holding time distribution
the same at that of the Down time, i.e.,1

ν
. This model can thus be

represented as shown in the Figure 5.
We now seek thefraction of time in false alarm(FROTIFA). It is

well known that the stationary distribution ofN(t) is Poisson with
mean

λQ

ν
. It then follows that FROTIFA is given by

∞
X

i=L

e−
λQ
ν

(
λQ

ν
)i

i!
(10)

Numerical Results:Again we taken = 1000, andL = 40. Under
the null hypothesis the samples are taken to be standard Gaussian.
Each sensor runs the LD1 algorithm. The FROTIFA values were
evaluated for the bias valuesb = 0.75, 1. The analysis and simula-
tion results are plotted in Figure 6. We observe that the results are
very similar to those for LD1 and Fusion Option 1, withTF A as the
false alarm measure.

8. ANALYSIS OF LOCAL DETECTOR 2
In this section we consider the use of LD2 in the sensor, along

with Fusion Option 2. As explained earlier, the false alarm mea-
sure is FROTIFA. The theory of large deviations helps us relate
the FROTIFA measure to thefraction of time above threshold(FO-
TAT) measure at each sensor. A target value of FROTIFA yields a
target FOTAT. Once a target FOTAT is available, the various design
parameters like bias,b, and the threshold,c, can be evaluated.

8.1 Analysis of LD2 to Obtain FOTAT
In this section, we assume that a bound,ǫ, on the FOTAT at a

local detector is available to the user (the next section deals with
the procedure to obtainǫ). The problem then is to relate the bias,
b, and threshold,c, at a sensor to the target FOTAT value. We use
Chernoff’s bound and the affine approximation given by Elwalid et
al. [11] to carry out the analysis. Since we are concerned mainly
with false alarm analysis, it suffices to analyse the CUSUM process
at any one sensor. Hence, as before, we drop the sensor index in
the notation.

c

Slope = − 

ln a

ln Pr(S > c)

0

η

Figure 7: Typical plot of lnPr(S > c) along with a linear
bound and an affine approximation.

In LD2 the CUSUM process is not stopped but is allowed to
freely evolve based on the measurements. Thus we are interested
in analyzing the stochastic processSk, k ≥ 0, defined by Equa-
tion (2), where theXk, k ≥ 1, are i.i.d. withE(Xk) − b < 0.
By unraveling the CUSUM recursion we easily obtain an alternate
expression for the processSk.

Sn = max
0≤k≤n

(

n
X

j=(n+1)−k

Xj − kb) (11)

8.1.1 Using Chernoff’s Bound
In this section, we use the Chernoff’s bound to obtain an upper

bound on the fraction of time during whichSk ≥ c. Using Equa-
tion (11) and the union bound, along with Chernoff’s bound, and
observing that under the null hypothesis theXj , j ≥ 1, are i.i.d.,
for anyθ > 0, we have

Pr(Sk ≥ c) ≤ e−θc
n

X

k=0

ek(Γ(θ)−θb) (12)

whereΓ(θ) = lnE
`

eθX1

´

. If

Γ(θ) < θb

then as the sample indexk goes to infinity, it is seen that the sum-
mation in Equation (12) converges to a constant, sayK. Hence, for
large values ofk, we can write

Pr(Sk ≥ c) ≤ Ke−θc

In the steady state, writing the marginal of the stationary version of
the process asS, we get the following.

Pr(S ≥ c) ≤ Ke−θc

Evidently, to obtain the best bound, we can takeθ = η(b) such that
Γ(η(b))

η(b)
= b, thus yielding the following bound on FOTAT at any

sensor, under the null hypothesis.

Pr(S ≥ c) ≤ Ke−η(b)c (13)

Now one approximation is to takeK ≈ 1. Then there exists a
linear relationship betweenln(Pr(S > c)) and the thresholdc.
This is plotted as the dashed line in Figure 7.

As before, we let the samples come from a standard Gaussian
distribution. Then,Γ(θ) = 1

2
θ2σ2. Using this expression and the

definition of η(b), we obtainη(b) = 2b
σ2 . Setting the bound in

Equation (13) equal toǫ, we obtainη(b) = − ln ǫ
c

, yielding the
following relation betweenb, c and the the FOTAT bound,ǫ,

bc = −σ2

2
ln ǫ



Table 2: Results for Local Detector 2 showing FOTAT obtained
for various values ofc with b = 0.75.

Threshold Simulations Chernoff Bound Affine (Elwalid)
c ǫsim ǫCher ǫAffElw

1.8 0.0285 0.0672 0.0270
1.9 0.0246 0.0578 0.0232
2.0 0.0213 0.0498 0.0200
2.1 0.0181 0.0429 0.0172
2.2 0.0158 0.0369 0.0148
2.3 0.0135 0.0317 0.0127
2.4 0.0115 0.0273 0.0109
2.5 0.0100 0.0235 0.0094

8.1.2 Using an Affine Approximation
As seen from Figure 7 the linear approximation could be quite

loose. A more accurate model can be obtained from the affine ap-
proximation due to Elwalid et al. [11]. The approximation is

Pr(S > c) ≈ a0e
−η(b)c (14)

wherea0 is approximated as the probability that a single sample
exceeds the bias. If the samples come from a standard normal dis-
tribution, we have

a0 = Pr(X > b) ≈ σ

b
√

2π
e
− b2

2σ2 (15)

8.1.3 Simulation Setup and Results
We consider a single sensor receiving a sequence of i.i.d. samples

that have the standard Gaussian distribution. The simulations were
allowed to run for a long time (typically105 samples or more), as
compared to the reciprocal ofǫ values. The results are presented in
Table 2.

8.1.4 Observations
It is seen from the table that the results obtained using Chernoff’s

bound fare poorly and that the affine approximation is quite close
to the simulation results. Hence, we make use of only the affine
approximation in our work.

8.2 Analysis of the Fraction of Time in False
Alarm (FROTIFA)

We now show how obtain the overall FROTIFA for the Fusion
Option 2, with LD2 at each sensor. We make use of results from
the theory of large deviations. We begin by using Cramer’s theo-
rem, following it with the Bahadur-Rao approximation. We con-
clude this section with simulation results to compare thesetwo ap-
proaches.

8.2.1 Using Cramer’s Theorem
The sensor level decision processesDi

k are independent 0-1 for
each of which the fraction of time spent in State 1 beingǫ, the FO-
TAT. Let Di, 1 ≤ i ≤ n, denote the steady state marginal random
variables for then sensors; these are i.i.d. Bernoulli, with proba-
bility of state 1 beingǫ. Since we use the Fusion Option 2, sensor
processes are not reset on a global alarm, and the false alarmmea-
sure is FROTIFA, which is given byPr(

Pn

i=1 D ≥ an), where
we have defineda = L

n
.

Define the quantities :

M(θ) = E

“

eθD1
”

l(a) = sup
θ

(θa − log M(θ))

Using Cramer’s theorem, we can easily show that:
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Figure 8: Results for Local Detector 2 with Fusion Option 2.
(− log10 FROTIFA) is plotted for different values of the thresh-
old c; b = 0.75. Results from simulations and various approxi-
mations are shown.

Pr(
n

X

i=1

Di ≥ an) ≤ e−nl(a) (16)

For Bernoulli random variables, the following expression is well
known.

l(a) = a log(
a

ǫ
) + (1 − a) log(

1 − a

1 − ǫ
)

8.2.2 Using the Bahadur-Rao approximation
We will see that conservative results are obtained due to theap-

plication of Cramer’s theorem. In this section, we investigate a bet-
ter result, namely, the Bahadur-Rao approximation [12], that can be
used instead of the Chernoff’s bound. The Bahadur-Rao approxi-
mation is given as follows:

Pr(

n
X

i=0

Di > na) ≈ 1

θ(a)
√

2πn
p

M ′′ (θ(a))
e−nl(a) (17)

whereθ(a) achieves the supremum insupθ (θa − ln M(θ)).

8.2.3 Simulation Results
In our simulations, we choose the following parameters:n =

1000, L = 40, b = 0.75. The samples were i.i.d. with standard
Gaussian distribution. The simulations were run for a long duration
(on the order of109 samples) and compared with the analytical
expressions. See Figure 8.

8.2.4 Observations
We observe that the FROTIFA is quite sensitive to the values of

threshold. Note the log scale on they-axis. We observe that when
the value ofǫ is available (through simulation) and the Bahadur-
Rao approximation is used to analyse the fusion rule, the resul-
tant values of FROTIFA match with those obtained entirely through
simulations (middle two curves). This shows that the Bahadur-Rao
approximation is excellent for analyzing the process at thefusion
centre.

However, if we take the FOTAT (ǫ) from the affine approxima-
tions used at the fusion centre, the design turns out to be slightly
optimistic (the top curve). This can be attributed to the optimistic
design at the sensor level (see the last column in Table 2, where
where the epsilon values are smaller than those actually obtained
(first column)).



Table 3: Design using LD1 and FO1, for user defined TFA.
TFAUser LD1 with FO1
Samples Threshold (c) Design Result (TFA)

104 2.54 2 × 104

5 × 104 2.6 6.3 × 104

105 2.63 2 × 105

5 × 105 2.67 6.34 × 105

106 2.7 1.48 × 106

9. A DESIGN EXAMPLE
The user defines the objective in terms of the mean time to false

alarm, which encapsulates the user’s ability to pay a price for false
alarms. However, if a very stringent false alarm objective is speci-
fied then there could be a large detection delay.

9.1 Converting the User-defined TFA constraint
to the FROTIFA constraint

The user defined constraint for false alarms will typically be
given in the form of the mean time to false alarm (TFA). However,
for analyzing the Fusion Option2 (Section 4)), it is convenient to
pose the false alarm constraint in terms of FROTIFA. If, under the
null hypothesis, the mean time spent in false alarm is much smaller
than the mean time to false alarm (a reasonable assumption inprac-
tice), then the following approximation is obtained

FROTIFA ≈ 1

TFA

We use this approximation in our design example.

9.2 A Design Example
The values ofn, L and the biasb are related through the event

model, the model for propagation of the sensing modality andthe
sensor response model. We assume these as obtained by other
means and provide the design of the CUSUM threshold at the sen-
sors. The analysis procedures discussed in Sections 6, 7 and8 are
used to obtain the value of the thresholdc. The values ofn = 1000,
L = 40 andb = 0.75 were chosen for this example.

9.2.1 Using LD1 and Fusion Option 1
The mean time to false alarm is obtained for the algorithm that

uses LD1 and Fusion Option1 using Equation (7). The parame-
tersb, c are implicit in Equation (7) (throughπL−1 andξ). How-
ever, evaluating the threshold directly from the above equation is
not possible as the integral equations involved do not have closed
form solutions. Hence, we need to resort to charts (similar to Fig-
ure 4). We present the results of the design in Table 3.

9.3 Using the LD1 and Fusion Option 2
This approach too makes use of the parametersξ andν for eval-

uating the false alarm constraint. Hence, we can evaluate the pa-
rameter pairb, c using charts like Figure 6. We present the results
of the design in Table 4.

9.4 Using the LD2 and Fusion Option 2
We make use of the affine approximation at the sensor level and

the Bahadur-Rao approximation at the fusion centre. The affine
approximation was used to obtain the sensor level time abovethe
thresholdǫ.

Using the user-definedTF A, we can obtain the parameterǫ from
the Bahadur-Rao approach. For our case, theǫ and the threshold
are related using Eqn(15). Thus, we can directly obtain the value
of the threshold. We present the results of the design in Table 5.

Table 4: Design using LD1 and FO2, for user defined TFA.
TFAUser LD1 with FO2
Samples FROTIFA-aimed Threshold (c) Design(TFA)

104 10−4 2.42 2 × 104

5 × 104 2 × 10−5 2.47 1.1 × 105

105 10−5 2.5 2.2 × 105

5 × 105 2 × 10−6 2.54 1.2 × 106

106 10−6 2.58 2.51 × 106

Table 5: Design using LD2 and FO2, for user defined TFA.
TFAUser LD2 with FO2
Samples FROTIFAtarget Threshold Design TFA
104 10−4 1.97 4 × 103

5 × 104 2 × 10−4 2.01 1.4 × 104

105 10−5 2.04 4 × 104

5 × 105 2 × 10−6 2.07 1.2 × 105

106 10−6 2.1 3 × 105

9.5 Discussion
From Tables 3 and 4 we conclude that the analytical approaches

we have developed for LD1+FO1 and for LD1+FO2 result in a
slightly conservative design. The TFA actually obtained isslightly
larger than the user specification. On the other hand from Table 5
we conclude that the affine approximation and Bahadur-Rao ap-
proximation based approach for analyzing LD2+FO2 yields a de-
sign that provides a smaller TFA than the user requirement. In each
case it is seen that the TFA is very sensitive to the thresholdc, as
observed earlier in the paper.

10. DETECTION DELAY: SIMULATION RE-
SULTS

We have only the simulation results for the detection delays. We
deploy n = 1000 sensors in the area of interest in a grid fash-
ion. The event occurs at a random place (chosen using the uniform
distribution), and at random time (chosen geometrically with the
parameterp = 0.0005). The coverage parameter was chosen to
be L = 40. For the post-change distributions, the values ofµi’s
were calculated as:µi = b∗dmin

di
where,dmin = 0.1 Km anddi is

the distance of theith sensor from the event. We chose the values
of b = 0.75 or 1 for our simulations. The results are presented in
Figure 6.

It is seen that the mean detection delay is in the order of a few
samples (0.5 to 2) for the values of threshold that gave the mean
time to false alarm of the order of105 − 107 samples.

11. CONCLUSION
We formulated an event detection problem with a user-defined

objective of mean time to false alarm, TFA. For this problem,we

Table 6: Detection delay. Here, thr stands for threshold, DD
stands for Detect Delay, and LFi stands for local decisioni with
fusion rule i

Bias Thr(LF1) DD(LF1) Thresh (LF2) DD(LF2)

0.75 2.6 1.13 1.7 1.02
0.75 2.7 1.17 1.75 1.2
0.75 2.75 1.45 1.8 1.39
0.75 2.8 1.54 1.85 1.65
0.75 2.9 1.8 1.9 1.66



explored three different approaches based on CUSUM based lo-
cal detectors at each sensor, and fusion of these local decisions at
a fusion centre. Our main contribution was to develop analytical
techniques for setting the CUSUM threshold for achieving the tar-
get TFA. Simulation results were presented to demonstrate how our
techniques work in a design example.

Our future work includes the study of an optimal parametric dis-
tributed detection scheme within the same framework. Also,we
will study ways to design the other parameters, i.e.,n, L, andb.
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