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Abstract—We consider the problem of event detection in
wireless sensor networks (WSNs) that are large in the sense
that an event affects the statistics of the observations of a small
number of sensors in the vicinity of where it occurs. An event
occurs at a random time at a random location in the region (called
the region of interest, ROI) covered by the WSN. We consider a
distance based sensing model in which the physical signal sensed
by a sensor at a distance d from the event is attenuated by
a factor ρ(d). We formulate the problem of detecting an event
as early as possible and locating it to a subregion of the ROI

under the constraints that the average time to false alarm (TFA)
and the average time to false isolation (TFI) are bounded by γ.
This formulation is motivated by the change detection/isolation
framework introduced by Nikiforov [6].

We extend the decentralized detection procedures MAX [11]
and ALL [9], [5], which are designed for colocated networks, to
the case of a large WSN where the event localization is also a
critical issue. The extended MAX and ALL detect the change and
identify a subregion where the event is located. Sensor noise can
make the local decisions of ALL toggle rapidly. Motivated by this
fact, we propose a distributed change detection/isolation proce-
dure, HALL (Hysteresis modified ALL). We study the supremum
average detection delay (SADD) performance of the change de-
tection/isolation procedures MAX, ALL and HALL for a required
min{TFA, TFI} > γ. We show that as γ → ∞, the (asymptotic)

SADD(ALL) 6
ln γ

ω0M̃I
, SADD(HALL) 6

ln(γ+1)

ω0(1−1/β)M̃I
+ C, and

SADD(MAX) 6
ln γ
ω0I

, where ω0, C, β and M̃ are constants

that depend on the sensor deployment, the postchange and the
prechange distributions of sensor measurements, and I is the
Kullback–Leibler divergence between a worst–case postchange
distribution and the prechange distribution of sensor measure-
ments. We also compare the SADD of the distributed procedures
with that of the asymptotically optimal centralized procedure
given by Nikiforov [6] for a Boolean sensing model. We show that
the SADD performance of ALL and HALL is of the same order
as that of Nikiforov’s. We also provide numerical comparison
of SADD and TFA for the centralized asymptotically optimal
scheme [6], and the distributed schemes MAX, ALL and HALL.

I. INTRODUCTION

Sensor networks are application–specific networks that com-

prise a large number of tiny, energy–limited, smart sensor

devices called nodes or motes [1]. The motes make measure-

ments, perform computations and communicate information

(e.g., an alarm) to a fusion center. In the centralized detection

strategy, all nodes send their measurements to the fusion

center, which is wasteful of resources (as the events are

typically rare), and hence reduces the lifetime and the utility

of the network. Thus, it is essential to have energy efficient

distributed algorithms.

In this paper, we are concerned with the scenario in which

a number of motes are deployed in a large region (Fig. 1(a))

to detect and locate events. An event occurs at a random time

and at a random location in the region. In this paper, we only

consider the case of a single stationary event. We wish to study

sequential algorithms for detecting and locating such an event

(also called change detection and isolation [6]) with small

detection delay, subject to a constraint on false alarm and false

isolation. For the reasons discussed above, we seek algorithms

that are distributed and require only local information from

the neighborhood of each node.

Related literature:

The problem of change detection and isolation is intro-

duced by Nikiforov in [6], and by Malladi and Speyer in

[4]. Nikiforov [6] extended the classical minimax optimal

change detection framework of Lorden to multiple postchange

hypotheses and proposed an asymptotically minimax delay

optimal procedure which is centralized, parametric and non–

recursive. Malladi and Speyer [4] consider a centralized

Bayesian change detection/isolation problem and show that

a threshold based test is optimal.

In the context of colocated networks (where the event

influences all the nodes in the network), considerable work has

been done in the decentralized setting. Niu and Varshney [7]

studied a simple (non sequential) hypothesis testing problem

and proposed a counting rule based on the number of alarms.

They showed that for sufficiently large number of sensors, the

detection performance of the counting rule is close to that of

the optimal rule. In the quickest decentralized change detection

problem, considerable work has been done by Tartakovsky

and Veeravalli [11], Tartakovsky and Kim [9] and by Mei [5].

Tartakovsky and Veeravalli [11] proposed the decentralized

detection procedure MAX for a colocated network. In MAX,

CUSUM is employed as the local decision rule and a global

alarm is raised as soon as all the sensor nodes are in the alarm

state. In MAX, once a sensor enters into an alarm state, it stays

in the alarm state until a global alarm is raised. Tartakovsky

and Kim [9], and Mei [5] proposed a decentralized procedure

ALL (again for a colocated network) based on the CUSUM

[2] statistic that continues to “run” even after crossing the

threshold and a global alarm is raised as soon as the CUSUM
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statistic of all the sensor nodes are above a threshold. It has

been shown ([9], [5]) that, asymptotically, the minimax SADD

performance of ALL is the same as that of the centralized

CUSUM procedure [3]. In [10] Tartakovsky and Polunchenko

studied the quickest change detection problem in a colocated

network in the presence of some unknown parameters, where

the unknown parameters take values in some parameter space.

Tartakovsky and Polunchenko chooses some reference points

in the parameter space and run CUSUM for each of the chosen

reference point. The global alarm is raised as soon as one of

the CUSUMs crosses a threshold. This procedure is shown to

be asymptotically optimal only when the unknown parameters

match with one of the reference points.

Our work differs from [11], [9], [5], and [7] in the sense that

these works consider detection in a colocated network (where

there is single postchange hypothesis) whereas we consider a

combined change detection/isolation problem in a large WSN.

Also, we propose a distributed algorithm whereas [6] and

[4] consider a centralized change detection/isolation problem.

Note that the computational complexity of Nikiforov’s pro-

cedure is prohibitively high. We study distributed procedures

based on local CUSUM detectors at the nodes. Also note that

centralized procedures ([6], [4]) involve high communication

costs. In [10], the authors consider only the change detection

problem and the problem of isolating the correct parameter

is not considered.

Summary of our contributions:

1) To the best of our knowledge, our work is the first on

distributed sequential event detection/isolation in a large

WSN where the event influences the observations of a

few sensor nodes in the vicinity of where it occurs.

2) We consider a practical sensing model which incor-

porates distance losses, and we provide the resulting

performance of the distributed change detection/isolation

procedures.

3) We identify subregions in the region of interest ROI,

each subregion being influenced by a unique set of

sensors. We formulate the quickest detection of an event

and locating it in a subregion under the average time to

false alarm (TFA) and the average time to false isolation

(TFI) requirements. This formulation is motivated by

Nikiforov [6].

4) We extend the decentralized procedures MAX ([11]) and

ALL ([5],[9]) that are developed for colocated networks

to large WSNs. We also propose HALL (Hysteresis mod-

ified ALL), a distributed detection/isolation procedure.

Note that the distributed procedures MAX, ALL and

HALL are computationally less complex and energy–

efficient (the communication cost is very less in dis-

tributed procedures compared to centralized procedures).

5) We analyze the supremum average detection delay

(SADD) of MAX, ALL and HALL for a required

min{TFA,TFI} > γ. Also, we use Nikiforov’s asymp-

totically optimum centralized procedure ([6]) as a bench-

mark and show that as γ → ∞, the SADD(ALL) 6

ln γ

ω0M̃I
, SADD(HALL) 6

ln γ

ω0(1−1/β)M̃I
+ C, and

SADD(MAX) 6
ln γ
ω0I , where ω0, C, β and M̃ are

constants that depend on the sensor deployment, the

postchange and the prechange distributions of sensor

measurements, and I is the Kullback–Leibler divergence

between a worst–case postchange and the prechange

distributions of sensor measurements. Our numerical

results show that for a given TFA requirement, the

SADD of Nikiforov’s centralized algorithm is the least

and that of the MAX is the highest. Also, we show that

SADD(ALL) ≈ SADD(HALL) and is little larger than

SADD(Nikiforov).

Outline of the paper: The rest of the paper is organized as

follows. In Section II, we provide the model for sensing, for

the sensor measurements under various hypotheses and for the

event. We formulate the problem in Section III. In Section IV,

we describe MAX, ALL and HALL and discuss the asymptotic

minimax delay optimality of these procedures. In Section V,

we provide numerical results and we conclude in Section VI.

II. SYSTEM MODEL

A. Sensing Model:

Let A be the region of interest (ROI) in which a WSN has to

be engineered for event detection. n sensor nodes are deployed

in the region A. Let ℓ(i) ∈ A be the location of sensor

node i and define ℓ = [ℓ(1), ℓ(2), · · · , ℓ(n)]. An event is a

source of some physical signal that is sensed at a sensor node;

for example, the source signal could be acoustic, infrared or

magnetic. In this work, we assume that all nodes have only one

type of sensor. Let he be the signal strength of the event1. A

sensor at a distance d from the event senses a signal heρ(d)+
W , where W is random (sensing) noise and ρ(d) is a loss

function which is, in general, a decreasing function of the

distance d. Note that the mean signal received by all sensors

at a distance d (from the event) is the same.

B. Detection Region and Detection Partition:

We define the detection range of a sensor as the distance rs

within which the mean signal level from an event is at least

µ1, a quantity to be defined later. We say that a location x
in the ROI is detection–covered by sensor i, if x lies within

the detection range of sensor i, i.e., if ‖ℓ(i) − x‖ 6 rs. Let

S(i) ⊆ A be the detection–coverage region of sensor i, i.e.,

any point x ∈ S(i) is detection–covered by sensor i. Thus,

the detection–coverage region of sensor node i is given by

S(i) = D(ℓ(i), rs) := {x ∈ A : ‖ℓ(i) − x‖ 6 rs}.

We assume that the sensor deployment is such that every

x ∈ A is detection–covered by at least one sensor. For each

x ∈ A, define N (x) to be the largest set of sensors by which x
is detection–covered, i.e., N (x) := {i : x ∈ S(i)}. Let C(N )

1The signal strength of the event in general lies in an interval [h, h] and
the exact value of he is usually unknown. In this case, we can work with
he = h as this corresponds to the least KL divergence between the “event not

occurred” hypothesis and “event occurred” hypothesis. See [10] for change
detection with unknown parameters for a colocated network.

179



2

3

1

A

N4 = {1, 2}

N5 = {2, 3}

N7 = {1, 2, 3}

N3 = {3}

N6 = {3, 1}

N2 = {2}N1 = {1}

(a) Partitioning of A in a

large WSN by Detection
regions

1 2

3

e

A

ℓ

(b) Influence and Detection re-

gions

Fig. 1. A simple example of partitioning of A in a large WSN. The three
sensor nodes, in the figure, divide the ROI into regions A1, · · · ,A7 such that
region Ai is detection–covered by a unique set of sensors Ni. In Fig. 1(b),
the dotted circles represent the influence region and the thin smaller circles
represent the detection region of sensors. Note the location of the event, ℓe ∈
A({1, 2}).

be the collection of all such sensor–sets, i.e., C(N ) = {N (x) :
x ∈ ROI}. Note that C(N ) is a finite set and it can have at

most 2n − 1 elements. Let N be the number of elements of

C(N ). For each Ni ∈ C(N ), we denote the detection–covered

region by Ai = A(Ni) := {x ∈ ROI : N (x) = Ni}. Hence,

the ROI is detection–partitioned into a minimal number of

subregions, A1,A2, · · · ,AN , such that the subregion Ai is

detection–covered by (each sensor in) a unique set of sensors

Ni, and Ai is the maximal detection–covered region of Ni,

i.e., ∀i 6= i′, Ni 6= Ni′ and Ai ∩ Ai′ = ∅. See Fig. 1(a) for a

three sensor example.

C. Event Model:

An event (or change) occurs at a random time T and at

an unknown location ℓe ∈ A. In this work, we consider only

stationary point events, i.e., an event occurs at a point and,

having occurred, stays there forever. Examples that would

motivate such a model are 1) gas leakage in the wall of a

large storage tank, 2) excessive strain at a point in a large flat

structure.

D. Measurement Model:

We consider a discrete time system and the basic unit

of time is one slot. The sensor nodes are assumed to be

synchronised (see, for example, [8]). At the beginning of every

slot k > 1, each sensor i samples its environment and obtains

the observation X
(i)
k ∈ R. Under the hypothesis “event not

occurred,” the observation X
(i)
k is just the sensor noise W

(i)
k .

Under the hypothesis “event occurred,” the observation of

sensor i is given by heρ(di) + W
(i)
k where di is the distance

of sensor i from the event. The noise processes {W (i)
k } are

identically distributed and assumed to be independent (i.i.d.)

across time and across sensor nodes, the probability density

function (pdf) of which is f0(·). The pdf of heρ(d) + W
(i)
k is

denoted by f1(·; d).

E. Influence Region:

In this paper, we propose distributed procedures for change

detection/isolation based on CUSUM [2], [3] at each node.

For each node i, at each time slot k, the driving term in the

CUSUM procedure should be the log likelihood–ratio (LLR)

of the observation X
(i)
k defined as Z

(i)
k (di) := ln

f1(X
(i)

k
;di)

f0(X
(i)

k
)

where di := ‖ℓe − ℓ(i)‖. As the location of the event ℓe is

unknown, the distance of each sensor i from the event, di is

also unknown. Hence, one can not work with the pdfs f1(·; di).
Recall the detection range rs introduced in Section II-B. We

propose to drive the CUSUM at each node with Z
(i)
k (rs) :=

ln
f1(X

(i)

k
;rs)

f0(X
(i)

k
)

. Note that for d < rs, the SADD of CUSUM with

Z(rs) as the driving term is larger than that with Z(d) as the

driving term. Thus, having the postchange pdf to be f1(·; rs)
corresponds to a worst–case assumption on the location of the

event (see Section IV-A for a discussion on SADD). We now

discuss results concerning the choice of rs.

A sensor can potentially pick up a signal from an event

located at a distance larger than rs. Thus, we are interested

in studying the driving term of the CUSUM at each node for

various distances that the event can be from the node.

Lemma 1: For Gaussian noise (i.e., f0 is Gaussian with

mean µ0 and variance σ2), for some rs > 0, let f1(·; rs) be

taken as the postchange pdf in the CUSUM algorithm being

used at a sensor. When the distance–loss function is ρ(d), the

mean of the driving term in CUSUM is negative if the event

occurs beyond a distance of r := min {d : 2ρ(d) 6 ρ(rs)}
from the sensor.

Proof: Let Z(d) be the LLR between pdfs f1(·; d) and

f0, and let Z(rs) be the LLR between pdfs f1(·; rs) and f0.

It is easy to see for Gaussian f0 (and hence for Gaussian

f1(·; ·)) that Ef1(·;d)[Z(rs)] = (heρ(rs))2

2σ2

(
2ρ(d)
ρ(rs) − 1

)
. Thus,

Ef1(·;d)[Z(rs)], the mean of the increment that drives CUSUM

decreases with d and hits 0 at r̄ given by r̄ := min{d′ :
2ρ(d′) 6 ρ(rs)}. Thus, Ef1(·;d)[Z(rs)] is negative when an

event occurs at a distance d > r.

We call r̄ as the sensing–range of a sensor.

Examples: The Boolean model is defined as

ρ(d) =

{
1 if d 6 rs,
0 otherwise

In this case, it is clear that the sensing range is just the

detection range and hence r = rs. The path–loss model is

given by

ρ(d) = d−η

for some path loss exponent η > 0, we can show that r =
21/ηrs. In the case of free–space, η = 2 and hence r̄ =

√
2·rs.

�

Note that for d > r̄, the CUSUM process at a node is a

positive recurrent Markov process and can eventually cross
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any value. We are interested in finding the average time the

CUSUM takes to cross a threshold c when the driving term is

Z(rs) and for d > r̄.

Lemma 2: When an event is at a distance d > r̄ from a

sensor, the average time the CUSUM of that sensor takes to

cross a threshold c when Z(rs) is the driving term is at least

exp(ω0 · c), where ω0 = 1 − 2ρ(d)
ρ(rs) .

Proof: Let τ be the stopping time of CUSUM defined

as the earliest time at which the CUSUM statistic crosses a

threshold c. From (Eqn. 5.2.79 pg. 177 of) [2], we can show

that Ef1(·;d)[τ ] > exp(ω0c) where ω0 is the solution to the

equation Ef1(·;d)

[
eω0Z(rs)

]
= 0, which is given by ω0 = 1 −

2ρ(d)
ρ(rs) .

Note that ω0 > 0 for d > r̄. We would be interested in

ω0 > ω0 a parameter which we discuss later. This requirement

is achieved if d > R̄ := min{d′ : 2ρ(d′) 6 (1 − ω0)ρ(rs)}.

We call R as the influence–range of a sensor. We define the

influence–region of sensor i as the region T (i) such that each

point x ∈ T (i) is within the influence–range of sensor i. Thus,

the influence–region of sensor i is T (i) = D(ℓ(i), R̄). We

define the influence region of a set of sensors Ni as the region

Bi such that each x ∈ Bi is within the influence range of all

the sensors in Ni, i.e.,

Bi := B(Ni) := {x ∈ A : x ∈ T (j) ∀j ∈ Ni}. (1)

Note that A(Ni) ⊆ B(Ni). In the following Section, we

formulate the problem of quickest detection of an event and

isolate it to one of the subregions B1,B2, · · · ,BN under a

false alarm and false isolation constraint.

F. Discussion and Motivation for Formulation

See Fig. 1(b) for a three sensor example of detection and

influence regions. In this example, the larger dotted circles

represent the influence region and the smaller continuous

circles represent the detection region of each sensor. Consider

an example in which an event occurs at ℓe as shown in

Fig. 1(b). Note that ℓe ∈ A({1, 2}). Also, note that the

event lies in the following influence–regions B({1}), B({2}),
and B({1, 2}) (and the event does not lie in any of the the

following influence regions, B({3}), B({1, 3}), B({2, 3}) and

B({1, 2, 3})). A global alarm will be raised if all the local

detectors in any of the Nis are triggered. Thus, with the event

at ℓe, the global alarm can be due to case 1: sensor 1 alone

or case 2: sensor 2 alone or case 3: due to both sensors 1

and 2. In case 1, we isolate the event to subregion B({1}), in

case 2, we isolate the event to subregion B({2}), and in case

3, we isolate the event to subregion B({1, 2}). Thus, in all the

three cases, the event is located to a region that contains it. If

the global alarm is due to case 4: sensors 1 and 3 or case 5:

sensors 2 and 3, or case 6: sensors 1, 2 and 3, or case 7 due

to sensor 3, then in all these cases the isolation region does

not contain the event and hence these cases correspond to the

false isolation.

III. PROBLEM FORMULATION

We are interested in the problem of distributed detec-

tion/isolation for a large WSN. Given a sample node deploy-

ment (i.e., given ℓ), and having chosen a value of rs, we have

a detection–partition of the regions A1,A2, · · · ,AN and let

N1,N2, · · · ,NN be the corresponding set of sensors. Let Bi

be the influence region of Ni. We define the following set of

hypotheses

H0 : event not occurred,

Hi : event occurred in subregion Bi, i = 1, 2, · · · , N.

Note that the location of the event ℓe is in exactly one Ai,

but it can be in one or more of the Bis. However, as an

event can only influence a few of the Bi in its vicinity, we

are satisfied by isolating it to any of these Bi. We study

distributed procedures that detect and locate an event (to any of

the Bis) subject to a false alarm and false isolation constraint.

The false alarm constraint considered is the average time to

false alarm at the region Bi (TFAi) defined as the average

number of samples taken under the hypothesis H0 to raise a

global alarm and declare the hypothesis Hi. The false isolation

constraint considered is the average time to false isolation

TFIij defined as the average number of samples taken to raise

a global alarm and declare the hypothesis Hj when the event

has not occurred in Bj but has occurred in Bi. The problem

is to obtain a detection/isolation procedure that minimizes the

supremum average detection delay SADD for the procedure

τ for a given min{TFAi,TFIij} requirement. The SADD(τ)
is defined in the same sense as Lorden [3] as the worst–

case average number of samples taken under any hypothesis

Hi, i = 1, 2, · · · , N , to raise a global alarm, i.e.,

SADD(τ) :=

sup
16i6N

sup
{s:ℓe∈Bi}

sup
k>1

ess sup E
(s)
k

[
(τ − k + 1)+|X[1,··· ,k−1]

]
,

where P
(s)
k is the probability measure when the change hap-

pens at time k and at a point ℓe ∈ Bi such that the distance be-

tween sensor j and the event is sj , with s := [s1, s2, · · · , sn],

and E
(s)
k is the corresponding expectation operator. Also note

that P∞ is the probability measure when there is no change

and E∞ is the corresponding expectation operator.

A. Nikiforov’s Setting

Nikiforov [6] considers a multi–hypothesis postchange

problem where there are N postchange hypotheses (and one

prechange hypothesis) and the joint pdf of the observations

under hypothesis Hi is gi and is completely known. Since, for

each Hi the corresponding postchange pdf is gi, this model

corresponds to the Boolean sensing model. The problem posed

in [6] is given by

inf SADD(τ) (2)

such that TFAi(τ) > γ, i = 1, 2, · · · , N

TFIij(τ) > γ, i 6= j, i, j = 1, 2, · · · , N.
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Nikiforov [6] solved the centralized version of the change de-

tection/isolation problem (defined in Eqn. 2) for the asymptotic

case when γ → ∞. The SADD of the asymptotically optimal

procedure is given by the following theorem.

Theorem 1 (Nikiforov 1995): For the N–hypotheses

change detection/isolation problem (for the Boolean sensing

model) defined in Eqn. 2, let gi be the pdf corresponding to

the hypothesis Hi, i = 0, 1, 2, · · · , N . The asymptotically

minimax delay optimal detection/isolation procedure τ∗ has

the property,

SADD(τ∗) ∼ ln γ

I∗
, as γ → ∞, (3)

where I∗ := min
06i6N

min
16j 6=i6N

I(gi, gj),

and I(·, ·) is the KL divergence. �

Nikiforov also proposed a centralized procedure τNikiforov

that achieves this asymptotic lower bound on SADD.

Nikiforov’s model does not capture the distance based

sensing and neighborhood effects in a WSN. However, we

show Nikiforov’s result, as this is one of the first works in

change detection/isolation, and provides a benchmark on the

asymptotic lower bound on the SADD for centralized pro-

cedures. Note that our problem is different from Nikiforov’s

problem in the following sense. In Nikiforov’s setting, the

observation under hypothesis Hi is assumed to follow a pdf gi

which is completely known. In our problem, under hypothesis

Hi, the event can be anywhere in the region B(Ni) and hence

the exact pdf of the observation is not known. Note that in

terms of the WSN scenario, Nikiforov’s setting corresponds

to a Boolean sensing model whereas our work is for a general

(distance based) sensing model. Also, we are interested in

providing a computationally feasible and distributed solution

that is optimal under the TFA and TFI constraints.

In Section IV, we propose a distributed detection procedure

HALL and analyze the false alarm (TFA), false isolation (TFI)

and the detection delay (SADD) properties. We also discuss

the false alarm (TFA), false isolation (TFI) and the detection

delay (SADD) properties of the detection/isolation procedures,

MAX and ALL.

IV. DISTRIBUTED CHANGE DETECTION/ISOLATION

PROCEDURES

In this section, we propose HALL a distributed detection

procedure for a large WSN and analyze the TFA, TFI and

SADD performance. We also analyze the performance of the

procedures MAX and ALL. We provide the procedures MAX

and ALL followed by HALL.

The MAX procedure: Tartakovsky and Veeravalli propose a

decentralized procedure MAX in a colocated scenario in [11].

We extend the MAX procedure to a large WSN under the

TFA and TFI constraints. Here, each sensor node i employs

CUSUM [2] for local change detection between pdfs f0 and

f1(·; rs). Let τ (i) be the random time at which the CUSUM of

sensor node i crosses the threshold c. Here, the local decision

of sensor node i, D
(i)
k is defined as

D
(i)
k :=

{
0 for k < τ (i),
1 for k > τ (i).

The global decision rule is a stopping time τMAX defined as

the earliest time slot k at which all sensor nodes corresponding

to a subregion Bi have crossed the threshold c. Thus,

τMAX(Ni) := max
{

τ (j), ∀j ∈ Ni

}
,

τMAX := min
{
τMAX(Ni) : 1 6 i 6 N

}
.

The isolation rule is to declare the region B(Ni) ⊇ A(Ni)
corresponding to the set of sensors Ni which raised the alarm.

The ALL procedure: Mei [5], and Tartakovsky and Kim

[9], propose a decentralized procedure ALL for a colocated

network. We extend the ALL procedure to a large WSN under

the TFA and TFI constraints. Here, each sensor node i employs

CUSUM for local change detection between pdfs f0 and

f1(·; rs). Let C
(i)
k be the CUSUM statistic of sensor node

i at time k. The CUSUM in the sensor nodes is allowed to

run freely even after crossing the threshold c. Here, the local

decision of sensor node i is

D
(i)
k :=

{
0 if C

(i)
k < c,

1 if C
(i)
k > c.

The global decision rule is a stopping time τALL defined as the

earliest time slot k at which all the sensor nodes corresponding

to a subregion Bi are above the threshold c, i.e.,

τALL(Ni) := inf
{

k : D
(j)
k = 1, ∀j ∈ Ni

}

= inf
{

k : C
(j)
k > c,∀j ∈ Ni

}

τALL := min
{
τALL(Ni) : 1 6 i 6 N

}
.

The isolation rule is to declare the region B(Ni) ⊇ A(Ni)
corresponding to the set of sensors Ni which raised the alarm.

Note that ALL declares an alarm only when all the nodes

corresponding to a region Bi are above the threshold.

The HALL Procedure: Motivated by the fact that sensor noise

can make the CUSUM statistic fluctuate around the threshold,

we propose a local decision rule which is 0 when the CUSUM

statistic has visited zero and has not crossed the threshold yet

and is 1 otherwise. We explain the HALL procedure below.

Each sensor node i computes a CUSUM statistic C
(i)
k based

on the LLR of its own observations between the pdfs f1(·; rs)

and f0. Define U
(i)
0 := 0. Define V

(i)
1 as the time at which

C
(i)
k crosses the threshold c (for the first time) as,

V
(i)
1 := inf

{
k : C

(i)
k > c

}

(see Fig. 2). Note that inf ∅ := ∞. Next define

U
(i)
1 := inf

{
k > V

(i)
1 : C

(i)
k = 0

}
.

Now starting with U
(i)
1 we can recursively define V

(i)
2 , U

(i)
2

etc. in the obvious manner, see Fig. 2. We define the quiet–

times and the active–times of the CUSUM process C
(i)
k as
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Fig. 2. ALL and HALL: Evolution of CUSUM statistic C
(i)
k

of node i plotted

vs. k. Note that at time k = V
(i)
j , R

(i)
j is the excess above the threshold.

Q
(i)
j := V

(i)
j − U

(i)
j−1 and A

(i)
j := U

(i)
j − V

(i)
j . Each node

i computes the local decision D
(i)
k based on the CUSUM

statistic C
(i)
k as follows:

D
(i)
k =

{
1 if V

(i)
j 6 k < U

(i)
j for some j

0 otherwise.
(4)

The global decision rule2 is a stopping time τHALL defined

as the earliest time slot k at which all the sensor nodes in a

region have a local decision 1, i.e.,

τHALL(Ni) := inf
{

k : D
(j)
k = 1, ∀j ∈ Ni

}
,

τHALL := min
{
τHALL(Ni) : 1 6 i 6 N

}
.

The isolation rule is to declare the region B(Ni) ⊇ A(Ni)
corresponding to the set of sensors Ni which raised the alarm.

For the distributed procedures MAX, ALL and HALL, we

analyze the SADD performance in Section IV-A, the TFAr in

Section IV-B and the TFIij in Section IV-C.

A. Supremum Average Detection Delay (SADD)

In this section, we analyze the SADD performance of the

distributed detection/isolation procedures. Note that for any

sample path of the observation process, the MAX rule raises

an alarm first, followed by the HALL rule and then by the ALL

rule. Thus we have, τMAX 6 τHALL 6 τALL. We recall that

each of the stopping times is the minimum of stopping times

corresponding to the sets of sensors {Nr : r = 1, 2, · · · , N}.

Note that there can be more than one true hypothesis. But there

exists a unique true hypothesis Hi such that ∀j ∈ Ni, sj 6 rs

(this is possible as ℓe ∈ Ai for exactly one i). Hence, for any

rule MAX, HALL or ALL, we have

τ rule = min{τ rule(Nr) : r = 1, 2, · · · , N},
6 τ rule(Ni),

and hence,

sup
k>1

ess sup E
(s)
k

[(
τ rule − k + 1

)+ | X[1:k−1]

]

6 sup
k>1

ess sup E
(s)
k

[
(τ rule(Ni) − k + 1)+ | X[1:k−1]

]
.

2The procedures HALL, MAX and ALL differ only in their local decision

rule; the global decision rule as a function of D
(i)
k

s is the same for
HALL, MAX and ALL.

We note from [9], as c → ∞,

sup
k>1

ess sup E
(s)
k

[
(τALL(Ni) − k + 1)+ | X[1:k−1]

]

=
c

minj∈Ni
Ef1(·;sj) [Z (sj)]

(1 + o(1)) ,

6
c

Ef1(·;rs) [Z (rs)]
(1 + o(1)) ,

=
c

I(f1(·; rs), f0)
(1 + o(1)) . (5)

The inequality above follows from Ef1(·;sj) [Z (sj)] =
(heρ(sj))

2

2σ2 6
(heρ(rs))2

2σ2 = Ef1(·;rs) [Z (rs)] as f1(·; d) is

Gaussian with mean heρ(d) + µ0 and variance σ2, and f0

is Gaussian with mean µ0 and variance σ2, and sj 6 rs

∀j ∈ Ni. Thus, for a given threshold c, asymptotically (as

c → ∞), SADD(τALL) 6 c

I
(
f1(·;rs),f0

) (1 + o(1)) and hence

SADD(τMAX) 6 SADD(τHALL) 6 c
I(f1(·;rs),f0)

(1 + o(1)),

where I(f1(·; rs), f0) is the Kullback–Leibler divergence be-

tween the pdfs f1(·; rs) and f0. Recall from Section II-B that

µ1 = heρ(rs) + µ0 and the parameter µ1 is chosen such that

a requirement on SADD is met. Thus, to achieve a required

SADD, we need to choose rs appropriately. A small value of

rs gives less detection delay compared to a large value of rs

and requires more sensors to detection–cover the ROI.

B. Average Time to False Alarm in region Br (TFAr)

From [11], we note for a threshold c that

TFAr

(
τMAX

)
> exp(c) (6)

and from [5], we have

TFAr

(
τALL

)
> exp (|Nr|c) . (7)

Thus, for MAX we choose c = ln γ and for ALL we choose

c >
ln γ
|Nr|

to achieve a TFAr of γ. The TFAr performance of

HALL is given by the following theorem.

Theorem 2: TFAr

(
τHALL

)
> γ when the threshold c is

chosen such that c
(
1 − 1

β+o(1)

)
>

ln(γ+1)
|Nr|

+ ln β+o(1)
I(f0,f1(·;rs)) ,

where β > 1 is a constant that depends upon the distribution

of the LLR of the observation.

Proof: See Appendix.

C. Average Time to False Isolation (TFIij)

Here, we consider the scenario in which the hypothesis Hi

is true and the hypothesis Hj is declared to be true at the time

of global alarm and the event does not lie in the region B(Nj),
i.e., we are interested in finding the time to global alarm due

to Nj when ℓe ∈ B(Ni) and ℓe /∈ B(Nj). This happens when

∃ node j′ ∈ Nj such that ℓe /∈ T (j′), the influence region

of node j′. We are interested in obtaining the corresponding

average time to false isolation, TFIij which we show in the

following theorem.

Theorem 3: Define the parameter λij for the Boolean sens-

ing model, λij = |Nj \ Ni| and for the path–loss sensing

model, λij = 1. The TFIij for the change detection/isolation

procedures is given by
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1) TFIij

(
τMAX

)
> γ, when the threshold c is chosen such

that c >
ln γ
ω0

.

2) TFIij

(
τALL

)
> γ, when the threshold c is chosen such

that c >
ln γ

ω0λij
.

3) TFIij

(
τHALL

)
> γ, when the threshold c is chosen

such that c
(
1 − 1

β+o(1)

)
>

ln(γ+1)
ω0λij

+ ln β+o(1)
ω0I(f0,f1(·;rs)) ,

where β > 1 is a constant that depends upon the

distribution of the LLR of the observation.

Proof: The event lies in the region B(Ni) \ B(Nj). Note

that Nj = (Nj ∩Ni)
⋃

(Nj \ Ni). The sensors in the set

Nj∩Ni are within the influence range. For the Boolean sensing

model, all the sensors in the set Nj \ Ni are beyond the

influence range from the event and for the path–loss model

there exists at least one sensor in Nj \Ni that lies beyond the

influence range from the event. From sample path argument,

it is clear that the time taken to raise a global alarm in region

Bj is at least as large as the time taken when we restrict the

set Nj to those which are beyond the influence range of each

of the sensors in Nj ∩Ni. There are at least λij nodes in this

restricted set. The observation of any of these sensor nodes

is just the sensor noise and hence the theorem follows from

Eqns. 6 and 7, from Lemma 2, and from Theorem 2.

In the next subsection, we discuss the asymptotic minimax

delay optimality of the distributed procedures in relation to

Theorem 1.

D. Asymptotic Order Optimality of ALL and HALL

Define the parameter M̃ as

M̃ = min
16i6N

min
16j 6=i6N

min
{
|Ni|, λij

}
.

By choosing c = ln γ

ω0M̃
for ALL, c = ln(γ+1)

(1− 1
β )ω0M̃

+

1
1− 1

β

ln β
ω0I(f0,f1(·;rs)) for HALL and c = ln γ

ω0
for MAX,

we see from Eqns. 6 and 7, and Theorems 2 and 3, that as

γ → ∞, min{TFAi(τ
rule),TFAij(τ

rule)} > γ for any rule,

ALL, HALL or MAX, and from Eqn. 5 that

SADD(τALL)6
ln γ (1 + o(1))

ω0M̃ · I(f1(·; rs), f0)
,

SADD(τHALL)6
ln(γ + 1) (1 + o(1))(

1 − 1
β

)
ω0M̃ · I(f1(·; rs), f0)

+ C + o(1),

SADD(τMAX)6
ln γ (1 + o(1))

ω0 · I(f1(·; rs), f0)
, (8)

where the constant C is
ln(β)

(1− 1
β )ω0·I(f0,f1(·;rs))·I(f1(·;rs),f0)

.

Note that as we decrease rs, I(f1(·; rs), f0) and ω0 increases.

But M̃ decreases as rs decreases. We are interested in the

tradeoff between M̃ and ω0I(f1(·; rs), f0) which we will

study in our future work.

To compare the asymptotic SADD performance of the dis-

tributed procedures HALL, MAX and ALL against the optimal

centralized scheme of Nikiforov, we consider the Boolean

sensing model when R̄ = rs and ω0 = 1. From Theorem 1

for Gaussian f0 and f1, we can show that

SADD(τ∗) ∼ ln γ

M∗ · I(f1, f0)

where M∗ = min
16i6N

min
16j6N,j 6=i

min {|Ni|, |Ni∆Nj |} .

Note that for the same min{TFA,TFI} requirement of γ,

the SADD of τ∗, τALL and τHALL scale as ln γ. Hence,

ALL and HALL are asymptotically order optimal. The factor

1/(1 − 1/β) in the SADD of HALL makes this slightly

larger than SADD(τALL). To achieve the desired false alarm

performance for the MAX procedure, we choose the threshold

c = ln γ and hence SADD
(
τMAX

)
∼ ln γ

I(f1(·;rs),f0)
. Thus, the

SADD performance of MAX is worse than that of ALL or

HALL. Note that M̃6M∗. Hence, there is a small price to

pay for the distributed procedure compared to the optimum

centralized procedure. But, the gain in SADD in the centralized

procedure is offset by substantially larger computation and

communication costs, particularly in terms of the node energy

expenditure, a critical issue in the context of wireless ad hoc

sensor networks.

V. NUMERICAL RESULTS

We compute the SADD and the TFAi performance of MAX,

HALL, ALL and the Nikiforov’s procedure for the Boolean

sensing model with f0 ∼ N (0, 1) and f1 ∼ N (1, 1). We

deployed 10 nodes in the ROI in a deterministic manner such

that we get N = 9 regions and N1 = {1, 2, 4}, N2 =
{2, 4, 5}, N3 = {2, 3, 5}, N4 = {4, 6, 7}, N5 = {4, 5, 7},

N6 = {5, 7, 8}, N7 = {6, 7, 9}, N8 = {7, 9, 10}, and

N9 = {7, 8, 10}. We obtain the SADD and the TFAi for

the above mentioned setup and plot the SADD against the

TFAi in Fig. 3.We observe from Fig. 3 that SADD increases

linearly with ln(TFAi) and that the slope is ≈ 1/I(f1, f0) for

MAX, and ≈ 1/(3 ·I(f1, f0)) for HALL, ALL, and Nikiforov’s

procedure. Also, we observe that for a given TFAi, Nikiforov’s

procedure has the smallest SADD and MAX has the largest

SADD. For example, for a TFAi requirement of 2000 slots,

the SADD of Nikiforov’s procedure is 6.2 slots, that of ALL

is 8 slots, HALL is 9 slots, and that of MAX is 17.5 slots.

Nikiforov’s procedure is an optimal centralized procedure and

hence it outperforms ALL, HALL and MAX. Also, SADD of

MAX is the largest as it does not scale with M̃ . From Eqn. 8, it

is clear that SADD of ALL is little smaller than that of HALL.

VI. CONCLUSIONS

We consider the quickest distributed event

detection/isolation problem in a large WSN with a practical

sensing model which incorporates distance losses. We study

the distributed detection/isolation rules, MAX, ALL and HALL

in the optimality framework introduced by Nikiforov [6].

We show that for a required min{TFA,TFI}, the SADD

performance of HALL and ALL is asymptotically of the same

order and differs from the optimal centralized procedure of

Nikiforov [6], by a constant factor. The SADD performance

of the MAX procedure is inferior to that of ALL or HALL.
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Fig. 3. SADD versus TFA for MAX, HALL, ALL and Nikiforov’s procedure.
The system parameters are f0 ∼ N(0, 1), f1 ∼ N(1, 1), rs = 1.0.

APPENDIX

SKETCH OF PROOF OF THEOREM 2: Note that {U (i)
j , j >

1} is a renewal process for any i and let A
(i)
j be the reward

in the jth cycle. By renewal theory, we can show that the

probability of a node in false alarm is given by
E∞A

(1)
1

E∞A
(1)
1 +E∞Q

(1)
1

and because, the CUSUMs of nodes i ∈ Nr are independent,

probability of false alarm in region Ar is

PFAr =

(
E∞A

(1)
1

E∞A
(1)
1 + E∞Q

(1)
1

)|Nr|

. (9)

Let τ1 < τ2 < · · · be the random times at which the system

enters false alarm in region Ar and let 0 =: ζ0 < ζ1 < ζ2 <
· · · be the random times at which the system comes out of

the false alarm in region Ar. We define TTFr, the mean time

to false alarms in Ar, as TTFr := lim
m→∞

1
m

∑m
j=1 [τj − ζj−1].

From sample path and coupling arguments, one can show that

TTFr 6 TFAr. Note that PFAr, the fraction of time the system

is in false alarm in region Ar is given by

PFAr = lim
m→∞

∑m
j=1 [ζj − τj ]∑m

j=1 [(τj − ζj−1) + (ζj − τj)]

> lim
m→∞

m∑m
j=1 [τj − ζj−1] + m

= lim
m→∞

1
1
m

∑m
j=1 [τj − ζj−1] + 1

=
1

TTFr + 1
(10)

The inequality in the second step is due to the fact that the

time duration the system spends in false alarm state is at least

one and the function g : {1, 2, 3, · · · } → R defined by g(x) :=
x

K+x is an increasing function, for a constant K. Therefore,

combining Eqn. 9 and Eqn. 10, we have

TTFr >




E∞

[
A

(1)
1 + Q

(1)
1

]

E∞

[
A

(1)
1

]




|Nr|

− 1,

>


 ec

E∞

[
A

(1)
1

]




|Nr|

− 1

> exp

(
|Nr|c

(
1 − ln E∞A

(1)
1

c

))
− 1. (11)

The inequality in the second step follows from E∞Q
(1)
1 > ec

(see Eqn. 5.2.80 in [2]) and E∞A
(1)
1 > 0. In the same way as

in Eqn. 5.2.67 in [2], we can show that

E∞A
(1)
1 6

c + r + o(1) + α

I(f0, f1(·; rs))
,

where r + o(1) = E∞R
(i)
j is the mean excess above c (in up–

crossing) and α is the mean excess in down–crossing. Note

that the positive constants, r and α do not depend on the

threshold c ([12], [2]). Define β = r + α. Hence,

ln E∞A
(1)
1

c

6
ln(c + β + o(1)) − ln I(f0, f1(·; rs))

c

=
ln(β + o(1))

c
+

ln(1 + c
β+o(1) )

c
− ln I(f0, f1(·; rs))

c

6
ln(β + o(1))

c
+

1

β + o(1)
− ln I(f0, f1(·; rs))

c
. (12)

Hence, Theorem 2 follows from Eqns. 11 and 12 as TTFr 6

TFAr.
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