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Abstract. We consider the problem of quickest transient change detection under a Bayesian setting.
The change occurs at a random time Γ1 and disappears at a random time Γ2 > Γ1. Thus, at any time
k, the system can be in one of the following states, i) prechange, ii) in–change, and iii) out–of–change.
We model the evolution of the state by a Markov chain. The state of the system can only be observed
partially from the observations which are obtained sequentially. We formulate the quickest transient
change detection problem as a Partially Observable Markov Decision Process (POMDP) and obtain the
following detection rules for a target probability of false alarm PFA 6 α,

1. MinD (Minimum Detection Delay), which minimizes the mean detection delay EDD

2. A–MinD (Asymptotic Minimum Detection Delay), which is an asymptotic version of the procedure
MinD when the mean time until the occurrence of change, E

ˆ

Γ1

˜

, goes to infinity
3. MaxP (Maximum Probability of Detection), which maximizes the probability of detection PD.

We provide numerical examples to illustrate performance of the procedures we propose. We also com-
pare our procedures with the CUSUM procedure for this problem which is known to be optimal under
an appropriately defined minimax setting. Our numerical results show that while MinD achieves the
least EDD across all events, the CUSUM procedure outperforms MinD when we consider only the events
that are stopped in the in–change state.
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1 Introduction

In the classical problem of quickest change detection (Page (1954), Shiryaev (1978)), the change
in the state of a system is modelled as a change in the distribution of an observation process
which represents a noisy version of the state of the system. Also, the change is assumed to
be persistent, i.e., the state of the system is 0 (pre–change state) before the change and is 1
(in–change state) forever after the change.

However, in some applications like intrusion detection, the change is transient and hence,
when the change disappears, the system goes to an out–of–change state (also called state 2).
Here, the distribution of the observations is the same, when the system is in state 0 or in state
2. Thus, making a decision about the state of the system as being pre–change or out–of–change,
based on the observations, appears to be more challenging than in the case of persistent change.

Related Work: Polunchenko and Tartakovsky (2009) studied the non–Bayesian transient
change detection problem and showed that the CUSUM procedure minimizes the supremum
detection delay suject to a false alarm constraint. Kligys et al. (1998) formulated a target
tracking problem as a sequence of track appearance and disappearance problems and studied
the detection performance of CUSUM and Shiryaev–Roberts–Girshik–Rubin procedures.
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2 Problem Formulation

We consider a discrete time system. A change occurs at a random time Γ1 ∈ Z+ and disappears
at a random time Γ2 ∈ Z+ (where Γ2 > Γ1). This change–model is motivated by the behaviour of
physical intrusion in a region under surveillance. Let Θk represent the state of the system at time
k. We say that Θk is 0 before the change occurs (pre–change), 1 when the change is present in the
system (in–change), and 2 after the change disappears (out–of–change) Thus, the state space of
the system is Θ = {0, 1, 2}. We assume that the evolution of the state process {Θk} is Markovian
and that the transition probabilities are given by P {Θk = j | Θk−1 = i} = ρij , i, j ∈ {0, 1, 2}
with the following conditions: ρ02 = 0, ρ10 = 0 and ρ22 = 1. Let the distribution of Θ0 be
given by P {Θ0 = θ} = (1− ν)1{θ=0} + ν1{θ=1}, for some 0 6 ν 6 1. Observations are obtained
sequentially starting from time k = 1 onwards. Let Xk denote the noisy observation of state at
time k. The distribution of Xk when Θk = 0 or 2 is given by F0(·), and that when Θk = 1 is given
by F1(·) 6= F0(·). We assume that the corresponding pdfs f0 and f1 6= f0 exist. Conditioned on
Γ1 and Γ2, the observations Xk are i.i.d. across time. This change model is an extension of what
is considered in Shiryaev (1978), and the special case of Γ2 = ∞ corresponds to the classical
problem. Note that at any time k, the state Θk is observed only partially through the observation
Xk. Also, note that the states “0” and “2” are indistinguishable from the observations.

At every time k ∈ Z+, after having observed Xk, the decision maker has to make a decision as
to whether the change has occurred (denoted by action “1”) or to continue observing (denoted
by action “0”). The decision procedure is allowed to depend on the prior information ν, the
parameters ρij , the observations so far X1,X2, · · · ,Xk, and the pre–change and the in–change
pdfs f0(·) and f1(·). Let τ be a stopping time with respect to the sequence X1,X2, · · · . We now
formulate the following transient change detection problems.

P1: Detect the change as early as possible subject to PFA 6 α:

min
τ

E
[
(τ − Γ1)

+
]

=: EDD (1)

subject to P {τ < Γ1} 6 α.

P2: Detect the change such that the probability of detection is maximum subject to PFA 6 α:

max
τ

P {Γ1 6 τ < Γ2} =: PD

subject to P {τ < Γ1} 6 α. (2)

3 Quickest Change Detection Procedures

We formulate the problems defined in (1) and (2) through a POMDP with the information
state at time k being the vector pk = [pk,0, pk,1, pk,2] of posterior probabilities where pk,θ :=
P {Θk = θ | X1,X2, · · · ,Xk}, and the action space being {0, 1}. Optimal policies for the corre-
sponding POMDPs can be obtained using Bellman’s equation and are given by

τMinD = inf {k > 0 : pk,0 6 c(1 − pk,0) + E [J∗ (Φ (pk,Xk+1))]} (3)

τMaxP = inf {k > 0 : −pk,0 + g · pk,1 > E [J∗ (Φ (pk,Xk+1))]} (4)

where Φ(pk,Xk+1) is a function that yields the next information state pk+1 given pk and Xk+1,
and c is the cost per unit delay and g is the gain per unit detection. Note that c and g are chosen
such that PFA = α is satisfied. We also obtain a policy τA−MinD which is the limiting case of
τMinD as ρ01 → 0 and is given by

τA−MinD = inf {k : pk,1 + pk,2 > Cρ01pk,0} (5)

where C is a threshold chosen such that PFA(τA−MinD) = α (see Raghavan and Veeravalli (2008)).
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Fig. 1. EDD vs PFA
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Fig. 2. ẼDD vs PFA
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Fig. 3. PD vs PFA

4 Numerical Results and Conclusion

In this section, we study the EDD and the PD performance of the procedures, MinD, A-MinD,
MaxP, and CUSUM. Note that A − MinD and CUSUM are simple threshold rules whereas the
procedures MinD and MaxP require the solution of the DPs defined by (3) and (4). We assume
the following parameters for numerical studies, f0 ∼ N (0, 1), f1 ∼ N (1, 1), ρ01 = 0.01, ρ12 = 0.1,

and ν = 0. We study the EDD, ẼDD := E [(τ − Γ1)
+|Θτ = 1] and the PD performance of all the

detection procedures we propose, for various values of PFA, and plot the results in Figs. 1–3.
Our numerical results show that while the MinD procedure achieves the least EDD across

all events (whether stopped in the in–change state or in the out–of–change state), the CUSUM

procedure outperforms the MinD procedure when we consider only the events that are stopped
in the in–change state. Also, we see from Figs. 1–3 that the EDD of MinD is approximately equal
to that of A − MinD.

Conclusion: We considered the transient change detection problem when the event that
causes the change is transient (i.e., not persistent). For a given constraint on PFA, we modeled
the transient change detection problem as a POMDP and obtained the following Bayesian
transient change detection procedures: 1) MinD, 2) A − MinD and 3) MaxP. We showed in the
numerical results that the EDD of the MinD procedure is approximately equal to that of the
A − MinD procedure, the later procedure being much easier to implement. We also showed that
the MaxP procedure results in the largest value of PD as expected. Finally, we showed that ẼDD

is the smallest for the CUSUM procedure.
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