
Utility Optimal Coding for Packet Transmission

over Wireless Networks – Part II:

Networks of Packet Erasure Channels
K. Premkumar, Xiaomin Chen, and Douglas J. Leith

Hamilton Institute, National University of Ireland, Maynooth, Ireland

E–mail: {Premkumar.Karumbu, Xiaomin.Chen, Doug.Leith}@nuim.ie

Abstract—We define a class of multi–hop erasure networks that
approximates a wireless multi–hop network. The network carries
unicast flows for multiple users, and each information packet
within a flow is required to be decoded at the flow destination
within a specified delay deadline. The allocation of coding rates
amongst flows/users is constrained by network capacity. We
propose a proportional fair transmission scheme that maximises
the sum utility of flow throughputs. This is achieved by jointly
optimising the packet coding rates and the allocation of bits of
coded packets across transmission slots.

Index Terms—Code rate selection, cross layer optimisation,
network utility maximisation, packet erasure channels, schedul-
ing

I. INTRODUCTION

In a communication network, the network capacity is shared

by a set of flows. There is a contention for resources among

the flows, which leads to many interesting problems. One such

problem, is how to allocate the resources optimally across

the (competing) flows, when the physical layer is erroneous.

Specifically, schedule/transmit time for a flow is a resource

that has to be optimally allocated among the competing

flows. In this work, we pose a network utility maximisation

problem subject to scheduling constraints that solve a resource

allocation problem. In another work, we studied the problem

of optimal resource allocation in networks [1].

We define a class of multi–hop erasure networks, and

consider packet communication over this class. The network

consists of a set of C ≥ 1 cells C = {1, 2, · · · , C} which

define the “interference domains” in the network. We allow

intra–cell interference (i.e transmissions by nodes within the

same cell interfere) but assume that there is no inter–cell

interference. This captures, for example, common network

architectures where nodes within a given cell use the same

radio channel while neighbouring cells using orthogonal radio

channels. Within each cell, any two nodes are within the

decoding range of each other, and hence, can communicate

with each other. The cells are interconnected using multi–

radio bridging nodes to create a multi–hop wireless network.

A multi–radio bridging node i connecting the set of cells

B(i) = {c1, .., cn} ⊂ C can be thought of as a set of n single

radio nodes, one in each cell, interconnected by a high–speed,

loss–free wired backplane (see Figure 1).
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Fig. 1. An illustration of a wireless mesh network with 4 cells. Cells a,
b, c, and d use orthogonal channels CH1, CH2, CH3, and CH4 respectively.
Nodes 3, 5, and 6 are bridge nodes. The bridge node 3 (resp. 5 and 6) is
provided a time slice of each of the channels CH1 & CH2 (resp. CH2 &
CH4 for node 5 and CH2& CH3& CH4 for node 6). Three flows f1, f2,
and f3 are considered. In this example, Cf1 = {a, b}, Cf2 = {d, b, a}, and
Cf3 = {c, d}.

Data is transmitted across this multi–hop network as a set F
= {1, 2, · · · , F}, F ≥ 1 of unicast flows. The route of each

flow f ∈ F is given by Cf = {c1(f), c2(f), · · · , cℓf (f)},

where the source node s(f) ∈ c1(f) and the destination node

d(f) ∈ cℓf (f). We assume loop–free flows (i.e., no two cells

in Cf are same). Figures 1 and 2 illustrate this network setup.

A scheduler assigns a time slice of duration Tf,c > 0 time

units to each flow f that flows through cell c, subject to the

constraint that
∑

f :c∈Cf
Tf,c ≤ Tc where Tc is the period of the

schedule in cell c. We consider a periodic scheduling strategy

(see Figure 2) in which, in each cell c, service is given to the

flows in a round robin fashion, and that each flow f in cell c
gets a time slice of Tf,c units in every schedule.

The scheduled transmit times for flow f in source cell c1(f)
define time slots for flow f . We assume that a new information

packet arrives in each time slot, which allows us to simplify

the analysis by ignoring queueing. Information packets of each

flow f at the source node S(f) consist of a block of kf
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symbols. Each packet of flow f is encoded into codewords

of length nf = kf/rf symbols, with coding rate 0 < rf ≤ 1.

The code employed for encoding is discussed in Section II.

We require sufficient transmit times at each cell along route Cf
to allow nf coded symbols to be transmitted in every schedule

period. Hence there is no queueing at the cells along the route

of a flow. It is not apparent at this point whether it is optimal

for flow f to transmit a single code–word of nf symbols or

transmit a block of nf symbols where each block carries some

portions of each of a set of coded packets.

Channel Model: The channel in cell c for flow f is

considered to be a packet erasure channel with the probability

of packet erasure being βf,c ∈ [0, 1]. Thus, the end–to–

end channel for flow f is a packet erasure channel with the

probability of packet erasure being

βf = 1−
∏

c∈Cf

[1− βf,c]

Let the Bernoulli random variable Ef [i] indicate the end–to–

end erasure seen by the ith block of flow f (independent of the

erasure seen by other blocks) of flow f . Note that Ef [i] = 1
means that the ith block is erased, and Ef [i] = 0 means that

the ith block is received successfully. Note that P{Ef [i] =
1} = βf = 1− P{Ef [i] = 0}.

Each packet has a deadline of Df slots, by which time

it must be decoded. Such a delay constraint is natural in

applications such as video streaming. A packet is in error if the

destination fails to decode the packet by the deadline. Letting

ef (rf ) denote the error probability that a packet fails to be de-

coded before its deadline, the expected number of information

symbols successfully received is Sf (rf ) = kf (1 − ef (rf )).
Other things being equal, we expect that decreasing rf (i.e.,

increasing the number of coded symbols nf = kf/rf sent)

decreases error probability ef and so increases Sf . However,

since the network capacity is limited, and is shared by multiple

flows, increasing the coded packet size nf1 of flow f1 gen-

erally requires decreasing the packet size nf2 for some other

flow f2. That is, increasing Sf1 comes at the cost of decreasing

Sf2 . We are interested in understanding this trade–off, and in

analysing the optimal fair allocation of coding rates amongst

users/flows.

Our main contribution is the analysis of fairness in the

allocation of coding rates between users/flows competing for

limited network capacity. In particular, we adopt a utility–

fair framework, and propose a scheme for obtaining the

proportional fair allocation of coding rates, i.e. the allocation

of coding rates that maximises
∑

f∈F logSf (rf ) subject to

network capacity constraints. This problem, which we show

in Section III, requires solving a non–convex optimisation

problem. Specifically, at the physical layer, the (channel)

coding rate of a flow can be lowered (to alleviate its channel

errors) only at the expense of increasing the coding rates of

other flows. Also, at the network layer, the length of schedules

of each flow should be chosen in such a way that it maximises

the network utility. Interestingly, we show in our problem

formulation that the coding rate and the scheduling are tightly

coupled. Also, we show that for a log (network) utility function

(which typically gives proportional fair allocation of resources)

Fig. 2. An illustration of transmission scheme in cell a of the network

in Figure 1: Every transmission schedule of Ta time units is time–shared by
nodes 1 and 3. Note that φ∆(f)NfRf symbols of the encoded packet p are
transmitted in transmission schedule p+∆, where ∆ ∈ {0, 1, 2, · · · , nf−1}.
The scheduling or capacity constraint of cell a may not be tight (indicated by
empty time slice in the figure), as the rates of flows f1 and f2 are governed
by the whole network.

the optimum rate allocation (in general) gives unequal air–

times which is quite different from the previously known

result of proportional fair allocation being the same as that of

equal air–time allocation ([2]). This problem, which we show

in Section III, requires solving a non–convex optimisation

problem. Our work differs from the previous work on network

utility maximisation (see [3] and the references therein) in

the following manner. To the best of our knowledge, this

is the first work that computes the optimal coding rate for

a given scheduling (or capacity) constraints in the utility–

optimal framework.

The rest of the paper is organised as follows. In Section II,

we obtain a measure for the end–to–end packet erasure, and

describe the throughput of the network. We then formulate a

network utility maximisation problem subject to constraints on

the transmission schedule lengths. In Section III, we obtain the

optimum transmission strategy and the optimum packet–level

coding rates for each flow in the network. In Section V, we

provide some simple examples to illustrate our results. Due to

lack of space, the proofs of various Lemmas are omitted.

II. PROBLEM FORMULATION

The encoding has two stages. The first stage is the encoding

of each information packet using a standard generator matrix

such as a Reed–Solomon code or a fountain code [4]. Let Pf [t]
denote the information packet that arrives at the source of

flow f in slot t. A packet Pf [t] of flow f has kf symbols, the

encoded packet Cf [t] of which is of size nf = kf/rf with 0 <
rf ≤ 1, and we assume that the code is such that the packet

Pf [t] can be reconstructed from any of its kf encoded symbols

(this is possible, for example, by Reed–Solomon codes).

The second stage allocates the content of the encoded packet

Ct of the first stage across the transmitted packets. Each

encoded packet is segmented into Df portions (where we

recall that Df is the decoding deadline requirement for each

packet of flow f ), the size of the ∆th portion being φf (∆)nf ,

where ∆ ∈ {0, 1, · · · , Df − 1} and 0 6 φf (∆) 6 1. At

transmission slot t, a transmitted packet is assembled from the

φf (0) portion of Cf [t], the φf (1) portion of Cf [t−1], and so

on until the φf (Df − 1)th portion of packet Cf [t−Df + 1].
This procedure is illustrated in Figure 3 for nf = 3. Note

that the transmitted packet is of size nf symbols. To decode a

packet Pf [t] of flow f , we use the transmitted packets that are

received during the transmission slots t, t+1, · · · , t+Df −1.

Note that the conventional strategy of transmitting an encoded

packet every transmission slot corresponds to the special case:
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Pf [1] Pf [2] Pf [3]

Cf [1] Cf [2] Cf [3]

φ0C[1] φ0C[2] φ1C[1] φ0C[3] φ1C[2] φ2C[1]

1 2 3Time

Fig. 3. Two stage encoding (example of Df = 3): information packet Pf [1]
of size kf is encoded to Cf [1] of size nf = kf/rf , the contents of which are
allocated across subpackets φ0Cf [1], φ1Cf [1], φ2Cf [1] across 3 timeslots.

φf (0) = 1 and φf (1) = φf (2) = · · · = φf (Df − 1) = 0.

We call the transmission scheme outlined above with general

φ·(∆)s a generalised block transmission scheme.

A. Network Constraints on Coding Rate

Let wf,c be the PHY rate of transmission of flow f in cell c.
For each transmitted packet of flow f , each cell c ∈ Cf along

its route must allocate at least
nf

wf,c
units of time to transmit

the packet (or encoded block). Let Fc := {f ∈ F : c ∈ Cf}
be the set of flows that are routed through cell c. We recall

that the transmissions in any cell c are scheduled in a TDMA

fashion, and hence, the total time required for transmitting

packets for all flows in cell c is given by
∑

f∈Fc

nf

wf,c
. Since,

for cell c, the transmission schedule interval is Tc units of time,

the coding rates rf must satisfy the schedulability constraint∑
f∈Fc

nf

wf,c
6 Tc.

B. Error Probability – Upper bound

Lemma 1. The end–to–end probability of a packet erasure

for flow f is bounded by

ẽf

= P





Df−1∑

∆=0

φf (∆)
kf
rf

Ef [∆] > nf − kf





≤ exp


−


θf (1− rf )−

Df−1∑

∆=0

ln
(
1− βf + βfe

θf ·φf (∆)
)





=: ef .

where θf > 0 is the Chernoff–bound parameter.

Let the random variable αf [t] indicate whether packet Pf [t]
is successfully decoded or not, i.e.,

αf [t] =

{
1, if packet Pf [t] is decoded successfully

0, otherwise.

We note here that the decoding errors for the successive

packets are correlated, as each encoded packet overlaps with

the transmission of previous Df−1 packets and the successive

Df − 1 packets. Hence, the sequence of random variables

αf [1], αf [2], αf [3], · · · are correlated. But, the probability of

any αf [t] = 0 is upper bounded by Lemma 1.

III. NETWORK UTILITY MAXIMISATION

For flow f , the total expected throughput as a result of

transmitting T ≥ 1 packets is given by

Sf (T )

=
∑

(x1,x2,··· ,xT )∈{0,1}T

(

T
∑

t=1

kfxt

)

P
{

αf [t] = xt, t = 1, 2, · · · , T
}

Note that the joint probability mass function

P {αf [t] = xt, t = 1, 2, · · · , T} is not a product–form

distribution as the packet erasures αf [t]s are correlated.

However, the above expectation can be written as

Sf (T ) =
T∑

t=1

∑

xt∈{0,1}

kfxtP {αf [t] = xt}

= T · kf · (1− ef )

Thus, the (average expected) flow throughput is defined as

Sf = lim
T→∞

Sf (T )

T
= kf · (1− ef ).

We are interested in maximising the utility of the network

which is defined as the sum utility of flow throughputs.

We consider the log of throughput as the candidate for the

utility function being motivated by the desirable properties

like proportional fairness that it possesses.

We define the following notations: the Chernoff–bound

parameters θ := [θf ]f∈F , coding rates r := [rf ]f∈F , and

the allocation of coded bits across transmission slots Φ :=
[φf ]f∈F where φf := [φf (0), φf (1), · · · , φf (Df − 1)]. Thus,

we define the network utility as

Ũ (Φ,θ, r) :=
∑

f∈F

ln (kf (1− ef (φf , θf , rf )))

=:
∑

f∈F

ln (kf ) + U (Φ,θ, r) (1)

The problem is to obtain the optimum coded bit allocation Φ
∗,

the optimum Chernoff–bound parameter θ∗, and the optimum

coding rate r∗ that maximises the network utility. Since, kf ,

the size of information packets of each flow f is given,

maximising the network utility is equivalent to maximising

U(Φ,θ, r) :=
∑

f∈F ln (1− ef ). Thus, we define the follow-

ing problem

P1:

max
Φ,θ,r

U(Φ,θ, r)

subject to
∑

f :c∈Cf

kf

rfwf,c

≤ Tc, ∀c ∈ C (2)

Df−1∑

∆=0

φf (∆) = 1, ∀f ∈ F (3)

φf (∆) ≥ 0, ∀f ∈ F , 0 ≤ ∆ ≤ Df − 1

θf > 0, ∀f ∈ F

rf ≤ λf ∀f ∈ F

rf ≥ λf ∀f ∈ F
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We note that the Eqn. (2) enforces the network capacity (or

the network schedulability) constraint. The objective function

U(Φ,θ, r) is separable in (φf , θf , rf ) for each flow f .

Importantly, the component of utility function for each flow

f given by ln (1− ef (φf , θf , rf )) is not jointly concave in

(φf , θf , rf ). However, ln (1− ef (φf , θf , rf )) is concave in

each of φf (·), θf , and rf . Hence, the network utility maximi-

sation problem P1 is not in the standard convex optimisation

framework. Instead, we pose the following problem,

P2:

max
Φ

max
θ

max
r

∑

f∈F

ln (1− ef (φf , θf , rf )) (4)

subject to
∑

f :c∈Cf

kf

rfwf,c

≤ Tc, ∀c ∈ C

Df−1∑

∆=0

φf (∆) = 1, ∀f ∈ F

φf (∆) ≥ 0, ∀f ∈ F , 0 ≤ ∆ ≤ Df − 1

θf > 0, ∀f ∈ F

rf ≤ λf ∀f ∈ F

rf ≥ λf ∀f ∈ F

In general, the solution to P2 need not be the solution to

P1. However, in our problem, we show that P2 achieves the

solution of P1.

Lemma 2. . For a function f : Y × Z → R that is concave

in y and in z, but not jointly in (y, z), the solution to the joint

optimisation problem for convex sets Y and Z

max
y∈Y,z∈Z

f(y, z) (5)

is the same as

max
z∈Z

max
y∈Y

f(y, z), (6)

if f(y∗(z), z) is a concave function of z, where for each z ∈ Z ,

y∗(z) := argmax
y∈Y

f(y, z).

We note that for each rf and θf , the probability of error

ef is convex in φf , and hence, ln(1− ef ) is concave in φf .

Thus, we first solve for the optimum code bit allocation φ∗
f

in Section IV-A. Then, using the optimum code bit allocation,

we solve for the optimum Chernoff bound parameter θ∗ which

we describe in subsection IV-B. After having solved for the

optimum θ∗, we show in Section IV-C that U(Φ∗,θ∗(r), r) is

a concave function of r. Hence, from Lemma 2, the solution

to problem (P2) (the maximisation problem that separately

obtains the optimum θ∗ and optimum r∗) is globally optimum.

We study the rate optimisation problem that obtains r∗ in

subsection IV-D.

IV. UTILITY OPTIMUM RATE ALLOCATION

A. Optimal Code Bit Allocation Φ

We consider the maximisation problem defined in Eqn. 4 for

a given coding rate vector r and Chernoff–bound parameter

vector θ, and obtain the optimum φf for each flow f ∈ F .

The sub–problem is given by

max
φf

∑

f∈F

ln (1− ef (φf , θf , rf ))

subject to

Df−1∑
∆=0

φf (∆) = 1, ∀f ∈ F
φf (∆) ≥ 0, ∀f ∈ F , ∀∆ ≤ Df − 1.

This is a separable convex optimisation problem, and hence

can be solved by Lagrangian method. Let µf be a Lagrangian

multiplier for the constraint
Df−1∑
∆=0

φf (∆) = 1, and define µ =

[µf ]f∈F . The Lagrangian function is given by

L(Φ,µ) =
∑

f∈F

ln (1− ef )−
∑

f∈F

µf

(
1−

Df−1∑

∆=0

φf (∆)

)

Applying KKT condition,

∂L

∂φf (i)
|φf (i)∗ = 0,

we get

0 =
−ef
1− ef

· βfθfe
θfφ

∗

f (i)

1− βf + βfe
θfφ∗

f (i)
+ µf

or, eθfφ
∗

f (i) =
1− βf

βf

(1− ef )µf

θfef − µf (1− ef )
(7)

for i = 0, 1, 2, · · · , nf − 1. Since, the RHS of Eqn. 7 is the

same for all i, we get φ∗
f (i) = φ∗

f (j), and hence

φ∗
f (∆) =

1

Df
, ∀∆ = 0, 1, · · · , Df − 1.

Thus, Φ∗ allocates equal portions of an encoded packet across

transmission schedules with a delay of 0, 1, · · · , Df−1, unlike

the conventional transmission scheme which transmits all the

coded bits of a packet in one shot. Hence, ef (φ
∗
f , θf , rf ) is

ef = exp

(
−
[
θf (1− rf )−Df ln

(
1− βf + βfe

θf
Df

)])
.

(8)

B. Optimal θ∗

We now consider the optimum Chernoff–bound parameter

problem with the optimum coded bits allocation Φ
∗, and for

any given coding rate vector r ∈ [λf , λf ]
F .

max
θ

∑

f∈F

ln
(
1− ef (φ

∗
f , θf , rf )

)
(9)

subject to θf > 0, ∀f ∈ F

We note that the objective function is separable in θf s, and

that ef is convex in θf . Hence, the problem defined in Eqn. (9),

is a concave maximisation problem. The partial derivative of

ef with respect to θf is given by

∂ef
∂θf

= −ef ·
[
(1− rf )−

βfe
θf/Df

1− βf + βfeθf/Df

]
.
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Observe that
βfe

θf /Df

1−βf+βfe
θf /Df

is an increasing function of θf .

Thus, if, for θf = 0, 1− rf − βf

1−βf+βf
< 0 or rf > 1− βf ,

the derivative is positive for all θf > 0, or ef is an increasing

function of θf . Hence, for rf > 1 − βf , the optimum θ∗f is

arbitrarily close to 0 which yields ef arbitrarily close to 1.

Thus, for error recovery, for any end–to–end error probability

βf , the coding rate should be smaller than 1 − βf , in which

case, we obtain the optimum θ∗f by equating the partial

derivative of ef with respect to θf to zero.

i.e.,
βfe

θ∗f /Df

1−βf+βfe
θ∗
f
/Df

= 1− rf

or, eθ
∗

f/Df =
1−rf
βf

1−βf

rf

or, θ∗f = Df

[
ln
(

1−rf
βf

)
− ln

(
rf

1−βf

)]
.

Thus, the probability of a packet decoding error for a given

rf with the optimum allocation of coded bits Φ
∗, and the

optimum Chernoff–bound parameter θ∗f , is

ef

= exp

(
−Df

[
(1− rf ) ln

(
1− rf
βf

)
+ rf ln

(
rf

1− βf

)])

= exp (−Df · KL(B(1− rf )||B(βf ))

where KL(f1, f2) is the Kullback–Leibler divergence between

the probability mass functions (pmfs) f1 and f2.

C. A convex optimisation framework to obtain optimal r∗f
If ln(1 − ef (φ

∗
f , θ

∗
f , rf )) is concave in rf , then one can

obtain the optimum r∗f using convex optimisation framework.

To show the concavity of ln(1−ef (φ
∗
f , θ

∗
f , rf )) it is sufficient

to show that ef (φ
∗
f , θ

∗
f , rf ) is convex in rf . Note that

∂ef
∂rf

= ef · θ∗f (rf )

∂2ef
∂r2f

= ef

[
θ∗2f − Df

rf (1− rf )

]

ef is convex if

[
ln

(
1− rf
βf

)
− ln

(
rf

1− βf

)]2
≥ Df

rf (1− rf )
,

or,

ln

(
1− rf
rf

1− βf

βf

)
≥

√
Df√

rf (1− rf )

or,

√
Df√

rf (1− rf )
− ln

(
1− rf
rf

1− βf

βf

)
≤ 0

The function 1√
rf (1−rf )

is convex in rf . Also, ln
(

1−rf
rf

)

is decreasing with rf , and hence, − ln
(

1−rf
rf

1−βf

βf

)
≤

− ln
(

1−λf

λf

1−βf

βf

)
. Thus, we have a sufficient condition

√
Df√

rf (1− rf )
− ln

(
1− λf

λf

1− βf

βf

)
≤ 0 (10)

The above condition requires the delay deadline Df to be

smaller than some Df (rf ). We consider Df s to satisfy this

condition, and hence, the rate optimisation problem is a

concave maximisation problem. For the sake of completeness,

we include this as a constraint in the problem formulation.

However, this condition is not an active constraint.

D. Optimal Coding Rate r

From the previous subsection, we observe under the delay

constraint Eqn. (10) that ef (φ
∗
f , θ

∗
f (rf ), rf ) is convex in rf ,

and hence, we obtain the optimum coding rate r∗f using convex

optimisation method. Also, from Lemma 2, it is clear that

r∗f is the unique globally optimum rate. Thus, we solve the

following network utility maximisation problem

max
r

∑

f∈F

ln
(
1− ef (φ

∗
f , θ

∗
f (rf ), rf )

)
(11)

subject to
∑

f :c∈Cf

kf
rfwf,c

≤ Tc, ∀c ∈ C

rf ≤ λf ∀f ∈ F
rf ≥ λf ∀f ∈ F

√
Df√

rf (1− rf )
− a ≤ 0 ∀f ∈ F (12)

where a = ln
(

1−λf

λf

1−βf

βf

)
. It is clear that the objective func-

tion is separable and concave, and hence, can be solved using

Lagrangian relaxation method. Also, we note here that the

constraint represented by Eqn. (12) is not an active constraint,

and hence, there is no Lagrangian cost to this constraint. We

note here that the coding rate should be such that kf/rf is

an integer, and hence, obtaining r∗f is a discrete optimisation

problem. This is, in general, an NP hard problem. Hence, we

relax this constraint, and allow rf to take any real value in

[λf , λf ]. The Lagrangian function for the rate optimisation

problem is thus

L(r,p,u,v)

=
∑

f∈F

ln (1− ef )−
∑

c∈C

pc



∑

f∈Fc

kf
rfwf,c

− Tc




+
∑

f∈F

uf

(
rf − λf

)
−
∑

f∈F

vf
(
rf − λf

)

Applying KKT condition, ∂L
∂rf

|r∗f= 0, we have

−1

1− ef

∂ef
∂rf

|r∗f =
∑

c∈Cf

pc
−kf

r∗2f wf,c
+ vf − uf

=
−kf
r∗2f



∑

c∈Cf

pc
wf,c


+ vf − uf

ef
1− ef

· θ∗f =
kf
r∗2f



∑

c∈Cf

pc
wf,c


+ vf − uf .

If the optimum r∗f is either λf or λf , then it is unique. If r∗f ∈
(λf , λf ), then uf = vf = 0, which is the most interesting

case, and we consider only this case for the rest of the paper.
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Let λf :=
∑

c∈Cf

pc

wf,c
. The above equation becomes

ef
1− ef

· θ∗f =
λfkf
r∗2f

(13)

ef =
λfkf

λfkf + θ∗fr
∗2
f

(14)

exp
(
−DfD(B(1− r∗f )‖B(βf ))

)
=

λfkf
λfkf + θ∗fr

∗2
f

DfD(B(1− r∗f )‖B(βf )) = ln

(
λfkf + θ∗fr

∗2
f

λfkf

)

(15)

In the above equation, the LHS is a strictly convex decreasing

function of r∗f . Since, the utility maximisation problem is a

concave maximisation problem, the optimum rate r∗f ∈ (0, 1−
βf ) exists and is unique.

E. Sub–gradient Approach to Compute optimum p∗c

In this section, we discuss the procedure to obtain the

Shadow costs or the Lagrange variables p∗. The dual problem

for the primal problem defined in Eqn. (11) is given by

min
p≥0

D(p),

where the dual function D(p) is given by

D(p)

= max
r

∑

f∈F

ln(1− ef (rf )) +
∑

c∈C

pc


Tc −

∑

f∈Fc

kf
rfwf,c




(16)

=
∑

f∈F

ln(1− ef (r
∗
f (p))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf
r∗f (p)wf,c


 .

(17)

In the above equation, ef (rf ) denotes ef (φ
∗
f , θ

∗
f (rf ), rf ).

Since the dual function (of a primal problem) is convex, D is

convex in p. Hence, we use a sub–gradient method to obtain

the optimum p∗. From Eqn. (16), it is clear that for any r,

D(p) ≥
∑

f∈F

ln(1− ef (rf )) +
∑

c∈C

pc


Tc −

∑

f∈Fc

kf
rfwf,c


 ,

and in particular, D(p) is greater than that for r = r∗f (p̃), i.e.,

D(p)

≥
∑

f∈F

ln(1− ef (r
∗
f (p̃))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c




= D(p̃) +
∑

c∈C

(pc − p̃c)


Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c


 (18)

Thus, a sub–gradient of D(·) at any p̃ is given by the vector

Tc −

∑

f∈Fc

kf
r∗f (p̃)wf,c




c∈C

. (19)

We obtain an iterative algorithm based on sub–gradient method

that yields p∗, with p(i) being the Lagrangians at the ith
iteration.

pc(i+ 1) =


pc(i)− γ ·


Tc −

∑

f∈Fc

kf
r∗f (p(i))wf,c





+

.

where γ > 0 is a sufficiently small stepsize, and [f(x)]+ :=
max{f(x), 0} ensures that the Lagrange multiplier never goes

negative. Note that the Lagrangian updates can be locally done,

as each cell c is required to know only the rates r∗f (p(i))
of flows f ∈ Fc. Thus, at the beginning of each iteration i,
the flows choose their coding rates to r∗f (p(i)), and each cell

computes its cost based on the rates of flows through it. The

updated costs along the route of each flow are then fed back

to the source node to compute the rate for the next iteration.

The Lagrange multiplier pc can be viewed as the cost of

transmitting traffic through cell c. The amount of service

time that is available is given by δ = Tc −
∑

f∈Fc

kf

r∗f (p(i))wf,c
.

When δ is positive and large, then the Lagrangian cost pc
decreases rapidly (because D is convex), and when δ is

negative, then the Lagrangian cost pc increases rapidly to make

δ ≥ 0. We note that the increase or decrease of pc between

successive iterations is proportional to δ, the amount of service

time available. Thus, the sub–gradient procedure provides a

dynamic control scheme to balance the network loads.

We explore the properties of the optimum rate parameter

r∗f in Section IV-F. In Section V, we provide some examples

that illustrate the optimum utility–fair resource allocation.

F. Properties of r∗f
Lemma 3. r∗f (Df ) is an increasing function of Df .

Lemma 3 is quite intuitive. For any given channel error βf ,

as the deadline become less stringent, it is optimal to go for a

high rate code. In other words, it is optimal for a flow to use as

much scheduling time as possible (for a large Df , and hence,

use a high rate code); however, the resources are shared among

multiple flows, and hence, we ask the following question:

“what is the optimal share of the scheduling time” that each

flow should have. Interestingly, in our problem formulation,

the code rate rf also solves this optimal scheduling times for

each flows.

V. EXAMPLES

A. Example 1: Two cells with equal traffic load

We begin by considering the example shown in Figure 4

consisting of two cells a and b having three nodes 1, 2, and

3. Each cell has the same packet erasure probability β and the

schedule length T . There are three flows f1, f2, and f3, with

two of the flows f1 and f3 having one–hop routes Cf1 = {b}
and Cf3 = {a}, and one flow f2 having a two–hop route

1605



a b

3flow f

flow f
1

Fig. 4. Cells with equal traffic load

Cf2 = {a, b}. Each flow has the same information packet size

k, decoding deadline D and PHY transmit rate, i.e. wf,c = w.

This is analogous to the so–called parking–lot topology often

used to explore fairness issues.

The end–to–end erasure probability experienced by the two–

hop flow f2 is greater than that experienced by the one hop

flows f1 and f3, since each hop has the same fixed erasure

probability. Hence, we need to assign a lesser coding rate rf2
to flow f2 than to flows f1 and f3 in order to obtain the

same error probability (after decoding) across flows. However,

when operating at the boundary of the network capacity region

(thereby maximising throughput), decreasing the coding rate

rf2 of the two–hop flow f2 requires that the coding rate of

both one–hop flows f1 and f3 be increased in order to remain

within the available network capacity. In this sense, allocating

coding rate to the two–hop flow f2 imposes a greater marginal

cost on the network (in terms of the sum–utility) than the one–

hop flows, and we expect that a fair allocation will therefore

assign higher coding rate to the two–hop flow f2. The solution

optimising this trade–off in a proportional fair manner can be

understood using the analysis in the previous section.

In this example, both the cells are equally loaded and, by

symmetry, the Lagrange multipliers pa = pb. Hence, λf1 =
λf2

2 = λf3 . For the Chernoff–bound parameter θ = [θ, θ], we

find from Eqn. (13),

ef2
1− ef2

· 1− ef1
ef1

=
λf2

λf1

·
r∗2f1
r∗2f2

= 2 ·
r∗2f1
r∗2f2

.

For sufficiently small erasure probabilities, we have

ef2
ef1

≈ 2 ·
r∗2f1
r∗2f2

≈ 2

Thus the proportional fair allocation is ef1 = ef3 ≈ 1/2 · ef2 .

That is, the coding rates are allocated such that the one–hop

flows have approximately half the error probability of the two–

hop flow.

B. Example 2: Two cells with unequal traffic load

We consider the same network as in the previous example,

but now with only the flows f1 and f2 (i.e., the flow f3 is not

present) in the network. In this example, cell b carries two

a b

3flow f

flow f1

Fig. 5. Cells with unequal traffic load

flows while cell a carries only one flow. The encoding rate

constraints are given by

1

rf2
≤ wT

k
, (from cell 1),

1

rf1
+

1

rf2
≤ wT

k
, (from cell 2).

Since, both rf1 and rf2 are at most 1, it is clear that at

the optimal point, the rate constraint of cell a is not tight

while the constraint of cell b is tight. Thus, the shadow prices

(Lagrange multipliers) pa = 0 and pb > 0. That is, at the first

hop the cell is not operating at capacity, and so the “price”

for using this cell is zero. In this example, λf1 = λf2 , and

hence, from Eqn. (13), we deduce that for sufficiently low

cell erasure probability β, ef1 ≈ ef2 . Alternatively, as the

delay deadline D → ∞, from Eqn. (13) we have ef1 = ef2 .

These proportional fair allocations make sense intuitively since

although flow f2 crosses two hops, it is only constrained at the

second hop and so it is natural to share the available capacity

of this second hop approximately equally between the flows.

When the erasure probability is sufficiently small, this yields

approximately the same error probabilities for both flows. For

larger erasure probabilities, it leads to the two–hop flow having

higher error probability, in proportion to the per–hop erasure

probability β.
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