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Abstract—We consider a downlink scheduling problem in
which the base station needs to serve a set of users. We consider
a time-slotted system in which in each time-slot, the scheduler
assigns service to a user. Whenever the scheduler changes the
service from one user to the other, the base station has to switch
it’s configuration from that of the previous user to that of the
current user. This incurs a delay, called “Reconfiguration delay.”
In this paper, we study the problem of scheduling in downlink
with reconfiguration delay. Our objective is to design scheduling
policies that optimally trade-off the average delay of data bits
with the average transmission power. We consider an indpendent
and identically distributed (IID) fading channel in which the
channel gain in each time-slot varies according to a distribution.
Also, the channel gain for each downlink user is independent of
each other and follows the same distribution. We obtain an lower
bound to the average power of transmission for any arrival rate
vector in the stability region. For the case of constant channel
state, we show that the outer bound is achievable using a variable
frame drift + penalty policy. We also study the trade-off problem
for the case of multiple channel states via simulations for two
different scheduling policies.

Index Terms—Wireless downlinks, Reconfiguration delay, Sta-
bility region, Queue stability, Power delay trade-off

I. INTRODUCTION

In this paper, we consider a simplified wireless downlink
model where a base station serves different users by switching
its service amongst the users. We note that such switching
might incur a reconfiguration delay (see Figure 1 for an illus-
tration). The reconfiguration delay is defined as the duration
between the time at which the base station scheduler decides to
serve a user and the time at which the actual service starts. Our
motivation to study such systems stem from satellite systems
with mechanically steered antenna, electronic beamforming,
optical routers [1], and radio transceivers [2] which have
reconfiguration delay. Modern mobile communication systems
also have reconfiguration delay. We study the problem of
scheduling of users for such systems. Wireless communication
systems also have random connectivity between the users and
the server which varies over time. It is important to control the
switching between users and the service rate of transmissions
so that random connectivity does not lead to a degradation
in performance. Furthermore, service rate control is essential
for minimizing the transmission power of a system. Motivated
by these objectives, in this paper we consider the design of
scheduling policies for wireless systems with reconfiguration
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Fig. 1. An example wireless downlink with two users and a base station
(BS). The data for the users have random bit arrivals Ai[k] into their buffers
at the BS. The BS can transmit at some rate to one user from its queue in
a slot. The connections between the BS and the users are random and time
varying. When the BS switches from serving one user to another there is a
reconfiguration delay of Tr slots.

delay with the objective of reducing the average delay of data
as well as transmission power.

A. Prior work

It was observed by Celik et al. [3] that max-weight policies
[4] may not be suitable for systems with reconfiguration delay
as such policies may cause frequent switching between queues
and hence may have reduced performance. For improved
performance, Celik et al. [3] had proposed the variable frame
max-weight (VFMW) policy. For the VFMW policy, switching
between queues happens only at the ends of frames which are
chosen as a suitable function of the queue length at the start
of the frame. Hsieh et al. [5] proposed Queue-Biased Max
Weight (QBMW) policy which has an intentional bias towards
the currently served user thereby reducing the switching delay.
QBMW policies were shown to improve the average delay
performance of VFMW policies. In our prior work [6] we
proposed a 1-lookahead policy, which was motivated by an
approximate solution to a Markov decision process formu-
lation of the scheduling problem. We also showed that the
QBMW policy can be motivated from this approximate solu-
tion. We note these prior work only considered memoryless
(IID) channels with multislot reconfiguration delay. Celik et al.
[2] had proposed frame based dynamic control (FBDC) and
m-lookahead myopic policies for correlated channels with a
single slot reconfiguration delay. In our prior work [7] we
had proposed scheduling policies for correlated channels and
multislot reconfiguration delay. Other work such as [8], [9]
also consider scheduling in networks with correlated random
connectivity but without reconfiguration delay. We note that in
all the above papers the aspect of rate control of the queue (and
corresponding transmit power expenditure) of the system is not
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considered, which is what we address in this paper. A related
work in this respect is that of Subhashini et al [10], which
studied the problem of designing base station activation and
rate allocation policies using time-scale separation. However,
[10] considers reconfiguration cost rather than an explicit delay
in reconfiguration.

B. Outline and contributions

Our system model and problem statement are described
in Section II. We present a queueing model with parallel
queues and a single server to model the wireless downlink.
The problem that we consider in this paper is a trade-off
between average power and average delay; which is formulated
as a constrained optimization problem. The feasibility of this
problem is considered in Section III, where it is observed to be
related to the notion of stability of the queueing system. Here
we characterize the stability region of our queueing system
and also obtain a lower bound to the average transmission
power which is expended in stable operation of our system. In
Section IV we propose a variable frame drift + penalty policy,
which is our primary contribution. The policy is a combination
of ideas from the VFMW policy of [3] as well as drift +
penalty from [4]. A secondary contribution is a proof that the
VFDP policy is optimal in the sense of achieving the lower
bound obtained in Section III for the case of a fixed or time-
invariant channel. We also propose a heuristic queue biased
max-weight + penalty policy in Section V and evaluate the
performance of the policies in Section VI through simulations.
We conclude the paper in Section VII. We summarize the
notation used in the paper here: (a) Z+ is the set of non-
negative integers, (b) vectors are denoted using boldface (e.g.
s), (c) random variables are denoted using capital letters (e.g.
X), (d) EX denotes expectation of a random variable X , and
(e) xT denotes the transpose of the vector x.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a discrete time queueing model for the wireless
downlink with N users and a base-station as shown in Figure
1. The time slots are indexed by k ∈ Z+. The number of bits
that are destined for user i is assumed to arrive to the ith user’s
queue according to a random process. The random number of
bits that arrive to the ith queue in the kth slot is denoted as
Ai[k]. We assume that each user has an infinite queue buffer
and these bits are queued up in the buffer, where they wait
for service. We assume that (Ai[k], k ≥ 0) is independent
and identically distributed (IID). We also assume that Ai-s
are independent across users and Ai[k] ≤ Amax. The arrival
rate of user i is denoted by λi, which is EAi[0]. The vector
of all arrival rates is denoted as λ = (λ1, λ2, . . . , λN )T .

We assume that the ith user is connected to the base-station
through a wireless channel, so that the ith user’s queue can
be modelled as being connected to the server through this
channel.

TABLE I
GENERAL NOTATIONS

Symbol Description

N Number of users
Ai[k] Number of bits per slot arriving to the

ith user queue at time slot k
Amax Maximum possible bits that can

arrive to a queue in a time slot
λi Arrival rate of user i
λ Vector of arrival rates

Ci[k] Channel state of ith user at time slot k
γi,c Probability of channel state c for ith user
Ri Set of service rates for ith user
Tr Number slots required for reconfiguration
Si[k] Number bits per slot serviced from user i at kth time slot
Pi[k] Power expenditure of ith user at time slot k

B Bandwidth of wireless channel
σ2 Noise variance of receiver
Qi[k] Queue length of ith user at time slot k
M[k] Queue which is in service at time slot k
R[k] Number of slots for which the current queue is in service
Γc Probability of channel state vector c
Tf Duration of f th frame
tf First time slot of f th frame

The channel has time varying state which models wireless
fading. The channel state for the ith user in the kth slot is
denoted as Ci[k]; the set of possible channel states for the
ith user is denoted as Ci. We assume that the channel states
are IID with respect to time and independent across users.
We denote the probability of the channel state being c for the
ith user as γi,c,∀c ∈ Ci. We note that

∑
c∈Ci γi,c = 1. We

use C[k] = (C1[k], . . . , CN [k])T to denote the channel state
vector in slot k.

The server needs to switch service between the different
queues in order to serve the bits from each queue. Furthermore,
the server also needs to choose the rate of service for each
queue. We assume that the set of service rates for the ith

queue is Ri ⊂ Z+; with a finite maximum value. In each
slot, a scheduler makes decisions about whether the service
needs to be switched from one queue to another, as well
as the rate to be used for service. We note that switching
service from one queue to another incurs a reconfiguration
delay of Tr slots; during this reconfiguration time there is
no service from the queue that we have switched to. We
denote the rate of service for the ith queue in slot k as
Si[k] (bits/slot). We note that Si[k] = 0 if the current queue
under service is not i or if the current queue under service
is i, but slot k is within the reconfiguration duration after a
switch has been made. We assume that when a rate of Si[k]
is used for queue i, then a transmission power of Pi[k] is
incurred which is a function of the rate Si[k] and channel
state Ci[k]. For example, Si[k], Ci[k], and Pi[k] are related as
Si[k] = B log2

(
1 +

C2
i [k]Pi[k]
σ2

)
, where B is the bandwidth of

the wireless channel and σ2 is the noise variance at the receiver
(the transmitter and receiver has channel state information
and noise is additive white Gaussian). In general, we say that
Pi[k] = Pi(Si[k], Ci[k]).

We denote the number of bits which are queued at the ith
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buffer at the beginning of slot k as Qi[k]. Then, we have that

Qi[k + 1] = (Qi[k]− Si[k])+ +Ai[k], (1)

where (.)+ = max(., 0). We use Q[k] =
(Q1[k], Q2[k], . . . , QN [k])T to denote the vector of queue
lengths at k and S[k] for the vector of service rates. We note
that only one component of S[k] would be non-zero at any
time k or S[k] = 0.

We also introduce some additional notation: (a) M [k] ∈
{1, 2, . . . , N} denotes the queue which is in service in slot
k and (b) R[k] denotes the number of slots for which the
current queue is being served. We note that unless R[k] > Tr
no service happens from the current queue. We also note that
if M [k] 6= M [k − 1] then R[k] = 1, otherwise R[k] = R[k −
1] + 1.

A scheduling policy µ is a sequence ((M [k],S[k]), k ≥ 0)
of decisions of which queue to serve and what service rate to
use for that queue. We assume that at the beginning of every
slot the channel state vector C[k] is known to the scheduler
for making a decision about M [k] and S[k].

For a scheduling policy µ, we are interested in two measures
of performance: the total average queue length and the total
average power which are defined as follows. The total average
queue length q(µ) for a scheduling policy µ is:

lim sup
T→∞

1

T
E

[
K−1∑
k=0

N∑
i=1

Qi[k]

∣∣∣∣Q[0]

]
.

In this paper, we consider the total average queue length
in place of average delay since for a fixed total arrival rate
(
∑
i λi) the average delay is proportional to the total average

queue length by Little’s law. The total average power p(µ) for
a scheduling policy µ is:

lim sup
T→∞

1

T
E

[
K−1∑
k=0

N∑
i=1

Pi[k]

∣∣∣∣Q[0]

]
.

We note that it is desirable to obtain a policy µ such that qµ
and pµ are as small as possible. However, it is intuitive that
we have a trade-off between qµ and pµ since a policy that
uses a larger service rate would have a smaller value of qµ
but larger pµ. Therefore, the problem that we are interested
in is the characterization of this trade-off between qµ and pµ.
In this paper, we consider this problem for stationary policies.
Stationary policies are such that the M [k] and S[k] are chosen
as a function only of the current state. The current state of the
system at the beginning of slot k is defined to be the tuple
(M [k − 1],Q[k],C[k]).

The trade-off problem is then the following optimization
problem:

minimize
µ

pµ,

such that qµ ≤ qc. (2)

When the above problem is feasible, the optimal value if it
exists is denoted as p∗(qc) and an optimal policy as µ∗. In
the next section, we consider the question of feasibility of this
problem.

III. FEASIBILITY OF TRADEOFF PROBLEM (2)
Suppose λi > maxRi, i.e., the arrival rate into the ith

queue is more than the maximum service rate from the ith

queue, then intuitively under any policy µ it is not possible to
have a finite total average queue length for our system. It is
then also intuitive that there exists a finite set Λ of arrival rate
vectors λ for which (2) is feasible. Our interest is therefore
to solve the (2) only for λ ∈ Λ. We consider

minimize
µ

pµ,

such that qµ <∞. (3)

We note that if (2) is feasible for some qc, then the above
problem is feasible.

Consider the following optimization problem:

minimize
βr,c

∑
c

Γc

∑
r

βr,cP (r, c),

such that
∑
c

Γc

∑
r

βr,cr ≥ λ,

βr,c ≥ 0,∀r, c, and
∑
r

βr,c = 1. (4)

Here c is a channel state vector which is an element of the
Cartesian product ×iCi, r is a service rate vector which is
an element of the Cartesian product ×iRi, and for c =
(c1, c2, . . . , cN )T , Γc = Πiγi,ci is the probability of the
channel state vector c. The function P (r, c) =

∑
i Pi(ri, ci).

We note that βr,c can be interpreted as the fraction of time a
rate vector r is used when the channel state vector is c. The
optimal value of the above problem is denoted as p∗(λ).

For a given λ we note that (4) is a relaxed form of (3),
since the constraint on the average queue length has been
replaced by a necessary condition (average service rate vector
dominates the arrival rate vector)1. We denote the set of all λ
for which (3) is feasible as Λ1. Since (3) is a relaxed form of
(2) we have the following result.

Proposition 3.1: The optimal value p∗(λ) of (4) is a lower
bound to the optimal value of (2). The set of arrival rates Λ1

is a superset (or outer bound) of Λ.
We note that (4) is a linear programming problem in the

decision variables βr,c,∀r. This linear programming problem
can be solved using standard numerical packages in order to
obtain p∗(λ) as well as to check if a given λ ∈ Λ1. Consider
an example with N = 2, C1 = C2 = {0, 0.5, 1}, and R1 =
R2 = {0, 1, 2}. The channel state probabilities are assumed
to be same for queues and are γ1,0 = 0.2, γ1,0.5 = 0.3, and
γ1,1 = 0.5. In Figure 2 we illustrate a set of λ ∈ Λ1. We obtain
this set of λ by exhaustively checking for the feasibility of
the linear program (4) for a given λ. In Figure 3 we illustrate

1There are some technical issues here which we summarize. In deriving this
relaxed optimization problem, the dominance of a system with reconfiguration
delay by a system without reconfiguration delay is also used. This is because
any stationary policy for the system with reconfiguration delay is a non-
stationary policy for the system without reconfiguration delay, where the
policy does not serve for Tr slots after a switch. Then, as in [11], it can
be shown that (4) is a relaxed problem for the system without reconfiguration
delay over all policies, and hence it is a lower bound for the system with
reconfiguration delay.
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Fig. 2. Illustration of a subset of arrival rate vectors λ that belongs to Λ1 for
a system with N = 2, C1 = C2 = {0, 0.5, 1}, and R1 = R2 = {0, 1, 2}.
The channel state probabilities are assumed to be same for queues and are
γ1,0 = 0.2, γ1,0.5 = 0.3, and γ1,1 = 0.5. The bandwidth B and σ2 are
chosen to be 1000 and 1 respectively.
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Fig. 3. Illustration of p∗(λ) for λ = ρ × (0, 1)T , ρ ∈ (0, 1) for a system
with N = 2, C1 = C2 = {0, 0.5, 1}, and R1 = R2 = {0, 1, 2}. The
channel state probabilities are assumed to be same for queues and are γ1,0 =
0.2, γ1,0.5 = 0.3, and γ1,1 = 0.5. The bandwidth B and σ2 are chosen to
be 1000 and 1 respectively.

p∗(λ) for λ = ρ × (1, 1)T where ρ ∈ (0, 1) for the same
example system used above.

To summarize, the trade-off problem (2) should be consid-
ered for λ ∈ Λ. However, we have an outer bound Λ1 for Λ.
In this paper, we study this trade-off problem using simulations
in Section VI.

However, for the case where |Ci| = 1 for every user i
(that is the channel state is fixed or we have a time-invariant
channel) we show that all λ ∈ Λ1 (except possibly those at
the boundary of Λ1) can be achieved. However, this has not
been extended to the case of |Ci| > 1 and is part of future
work. For the case of |Ci| = 1,∀i, we also show that p∗(λ)
can be achieved arbitrarily closely for λ ∈ Λ1 and in the
process obtain a characterization of p∗(qc) for (2).

IV. VARIABLE FRAME DRIFT + PENALTY POLICY

In this section, we propose a variable frame drift + penalty
(VFDP) scheduling policy for our system. VFDP policy is an
extension of the VFMW policy of Celik et al. [2] to the case
with rate control. VFDP is a parameterized family of policies
which trade-off the average queue length with average power.
For the case where the channel is constant, we also show that
the VFDP policy achieves average power values arbitrarily
close to p∗(λ) for λ ∈ Λ1.

The VFDP policy is implemented over frames; in each
frame one queue is served. The intuition is that by making
the frame durations large, the switching between queues can
be reduced. Let us denote that slots at which frames start as
t0, t1, . . . , tf , . . . , f ∈ Z+, with t0 = 0. The duration of the
f th frame is denoted as Tf , e.g., T0 = t1−t0. In the following
we will choose Tf as a slowly growing function of the total
queue length at the frame-start time tf .

The VFDP policy is defined as follows. The decision to
switch between queues is only taken at the frame start slots.
However, the rate of service from the queue that is chosen for
a particular frame has to be decided in every slot in the frame
duration. We assume that the first queue was in service at the
start of system operation so that M [−1] = 1. At the start of
the f th frame we compute the following metric Ei for each
queue i. If i = M [tf − 1] then

Ei = min
sc[τ ],∀τ

[
− 2Qi[tf ]


tf+1−1∑
τ=tf

{∑
c∈Ci

γi,csc[τ ]− λ

}
+V

tf+1−1∑
τ=tf

∑
c∈Ci

γi,cPi(sc[τ ], c)

]
,

where the optimization is carried out over the variables sc[τ ]
for every τ ∈ {tf , . . . , tf+1 − 1}. The intuition behind this
metric comes from a drift + penalty expression obtained
by considering Lyapunov drift embedded at the frame start
epochs. Also if i 6= M [tf − 1] then

Ei = min
sc[τ ]

[
− 2Qi[tf ]


tf+1−1∑
τ=tf+Tr

{∑
c∈Ci

γi,csc[τ ]− λ

}
+V

tf+1−1∑
τ=tf+Tr

∑
c∈Ci

γi,cPi(sc[τ ], c)

]
,

where we consider sc[τ ] for every τ ∈
{tf + Tr, . . . , tf+1 − 1} since there is a reconfiguration
delay. The VFDP policy is defined in Algorithm 1. We note

Algorithm 1 VFDP policy
if slot index k == frame start time tf then

a: Calculate the metrics Ei.
b: Switch to a queue i∗ where

i∗ = arg min
i

Ei.

c: M [k] = i∗

d: tf+1 = tf + Tr + (
∑
iQi[tf ])

α
, α ∈ (0, 1).

for every slot k do obtain the service rate S[k] as follows.
Suppose M [k] = i and the channel state for the ith queue
is Ci[k],

S[k] = arg min
s

[−2Qi[tf ] {s− λ}+ V Pi(s, Ci[k])] ,

where tf is the frame start time such that k ∈
{tf , . . . , tf+1 − 1}.

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

487Authorized licensed use limited to: Indian Institute of Information Technology Design & Manufacturing. Downloaded on February 13,2021 at 12:34:21 UTC from IEEE Xplore.  Restrictions apply. 



10
0

10
1

10
2

1

1.5

2

2.5

3

V

A
v
e
r
a
g

e
 p

o
w

e
r

p
(
µ

V
)

p
*
(λ) = 1.3746

Fig. 4. The plot of p(µV ) versus V for a sequence of VFDP policies (with
α = 0.5) for a system with |Ci| = 1, ∀i. The system has N = 2, R1 =
R2 = {0, 1, 2} , Tr = 3, B = 1, and σ2 = 1. The arrival rate vector is
λ = (0.4, 0.4)T .
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Fig. 5. The plot of p(µV ) versus q(µV ) for a sequence of VFDP policies
(with α = 0.5) for a system with |Ci| = 1,∀i. The system has N = 2,
R1 = R2 = {0, 1, 2} , Tr = 3, B = 1, and σ2 = 1. The arrival rate vector
is λ = (0.4, 0.4)T for which p∗(λ) = 1.3746. We note that this is an upper
bound to p∗(qc).

that the VFDP policy is parameterized by: (a) α ∈ (0, 1)
which decides the frame duration and (b) V which trades-off
the importance of minimizing power and increasing the
service rate. We have the following result for the VFDP
policy which motivates its use as a scheduling policy for our
system.

Proposition 4.1: Consider the case where |Ci| = 1 for every
i for a system with arrival rate vector λ. Let us define a
sequence of VFDP policies µV for a sequence V →∞. Then,
we have that p(µV )→ p∗(λ), with q(µV ) <∞.

The proof of this proposition is given in Appendix A. It also
then follows that any point in the interior of Λ1 is stable
for the case of a fixed channel state. We illustrate the above
property of VFDP policies using a simulation in Figure 4. We
observe that as V → ∞ the average powers achieved by the
VFDP policies approach the lower bound p∗(λ). The error bar
length of this plot is 0.0034 which is very small. We also note
that since VFDP is some policy we can also obtain an upper
bound on p∗(qc) which is shown in Figure 4. We also observe
that as p∗(λ) is approached, q(µV ) < ∞ and q(µV ) is also
proportional to V which is the usual behaviour observed for
drift + penalty algorithms [4].

V. QUEUE BIASED MAX-WEIGHT + PENALTY POLICY

In this section, motivated by the approach in [5] and our
prior work [6], we propose a queue biased max-weight +
penalty (QBMWP) policy. We note that (2) can be written
as

minimize
µ

pµ + Lqµ, or,

minimize
µ

qµ + V pµ,

where L is a Lagrange multiplier and V is 1
L , both strictly

greater than 0. Then in every slot k, we define the following
metrics. Suppose M [k − 1] = i, then

Wi[k] = min
sc[n]

Tr∑
n=0

∑
c∈Ci

γi,c (−2Qi[k]sc[n] + V Pi(sc[n], c))

 .
For a queue j 6= i,

Wj [k] = min
sc

[∑
c∈Ci

γi,c (−2Qi[k]sc + V Pi(sc, c))

]
.

We now propose our heuristic QBMWP based on the above
metrics in Algorithm 2.

Algorithm 2 QBMWP policy
for every slot k do

1: Calculate the weights Wj [k], j ∈ {1, 2, . . . , N}.
2: If Wj [k] > Wi[k], then switch to the jth queue (i.e.,

M [k] = j), else stay with the ith queue.
3: For the currently served queue (let this be i), the

service rate S[k] is chosen as

S[k] = arg min
s

[−2Qi[k] {s− λ}+ V Pi(s, Ci[k])] ,

if R[k] > Tr, otherwise S[k] = 0.

Currently, we do not have a proof of whether a sequence
of QBMWP policies achieve p∗(λ) even for |Ci = 1|,∀i.
In the next section, we study the trade-off performance of
both policies for systems with multiple channel states using
simulations.

VI. SIMULATION RESULTS

In this section we illustrate and compare the trade-off
performance of VFDP and QBMWP policies for the case of
multiple channel states. In Figure 6 we consider a system with
N = 2, C1 = C2 = {0, 0.5, 1}, and R1 = R2 = {0, 1, 2}.
The channel state probabilities are assumed to be same for
queues and are γ1,0 = 0.2, γ1,0.5 = 0.3, and γ1,1 = 0.5. The
bandwidth B and σ2 are chosen to be 1 and 1 respectively.
The arrival rate vector is (0.4, 0.4)T . The different points on
the trade-off curve are obtained by varying the parameter V .
We observe that as V increases beyond 50000, the simulations
require iterations of the order of 109 to converge. Such values
of V are excluded from our results. Even though the QBMWP
policy does not explicitly make use of frames, we observe that
the trade-off performance is worse compared to that of VFDP
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Fig. 6. The plot of p(µV ) versus q(µV ) for a sequence of VFDP (α = 0.5)
and QBMWP policies for a system with N = 2, C1 = C2 = {0, 0.5, 1}, and
R1 = R2 = {0, 1, 2}. The γi,c are assumed to be same for all queues and
are γ1,0 = 0.2, γ1,0.5 = 0.3, and γ1,1 = 0.5. The bandwidth B and σ2 are
chosen to be 1 and 1 respectively. The arrival rate vector is (0.4, 0.4)T .
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Fig. 7. The plot of p(µV ) versus q(µV ) for a sequence of VFDP (α = 0.9)
and QBMWP policies for a system with N = 2, C1 = C2 = {0.5, 1}, and
R1 = R2 = {0, 1, 2}. The γi,c are assumed to be same for all queues and
are γ1,0.5 = 0.4, and γ1,1 = 0.6. The bandwidth B and σ2 are chosen to
be 1 and 1 respectively. The arrival rate vector is (0.1, 0.5)T .

in this case. We also consider another example in Figure 7 with
N = 2, C1 = C2 = {0.5, 1}, and R1 = R2 = {0, 1, 2} (other
parameter choices are given in the figure). In this case we
observe that QBMWP has a better trade-off performance than
VFDP, showing that it is necessary to thoroughly characterize
the performance of these policies analytically in order to
decide which policy should be used in practice.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of designing schedul-
ing policies for trading off average power with average delay
(or average queue length) for a queueing system with recon-
figuration delay. We obtained an outer bound to the set of
arrival rates for which the average queue length is finite; this
is obtained using a linear programming problem. The linear
program also provides a lower bound to the minimum average
power for a given arrival rate vector. We also proposed two
policies, VFDP and QBMWP which trade-off the average
power with average queue length. We showed that the VFDP
policies achieves the minimum average power for the case of
a system with a fixed channel state for all users and compared
the performance of these policies using simulations. In future
work, we plan to investigate whether the VFDP policies or the
QBMWP policies have the property of achieving the minimum
average power for a given arrival rate vector for systems with

multiple channel states. Our conjecture is that the lower bound
that we obtain for the minimum average power as well as
the region Λ1 are both loose and needs further investigation.
We also plan to analyze the performance of our policies for
systems with N > 2.
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APPENDIX A
PROOF OF PROPOSITION 4.1

The proof uses a Lyapunov drift + penalty technique mo-
tivated by the proof of stability of VFMW in [2]. This is
extended with the usual average power bounding technique
used in [4]. Because of space constraints, we only provide an
outline of the proof here. We consider the queue lengths at
the frame start slots. We have that

Qi[tf+1] ≤

Qi[tf ]−
tf+1−1∑
τ=tf

Si[τ ]

+

+

tf+1−1∑
τ=tf

Ai[τ ].

We use a Lyapunov function L(Q) =
∑
iQ

2
i . Therefore

(Qi[tf+1])
2 ≤ 2

Qi[tf ]−
tf+1−1∑
τ=tf

Si[τ ]

+
tf+1−1∑
τ=tf

Ai[τ ]

+

Qi[tf ]−
tf+1−1∑
τ=tf

Si[τ ]

2

+

tf+1−1∑
τ=tf

Ai[τ ]

2

.
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Using Ai[τ ] ≤ Amax and Si[τ ] ≤ maxRi, we can then show
that

(Qi[tf+1])
2 ≤ −2Qi[tf ]

tf+1−1∑
τ=tf

Si[τ ]−
tf+1−1∑
τ=tf

Ai[τ ]


+BT 2

f ,

where B is a non-negative constant. The expected Lyapunov
drift is then

E [L(Q[tf+1])− L(Q[tf ])|Q[tf ],M [tf − 1]] ,

which can be bounded above as

−2
∑
i

Qi[tf ]Etf

tf+1−1∑
τ=tf

Si[τ ]−
tf+1−1∑
τ=tf

Ai[τ ]

+NBT 2
f ,

where Etf denotes the conditional expectation with respect to
the state Q[tf ],M [tf − 1]. Using the usual idea of drift +
penalty we consider

−2
∑
iQi[tf ]

[
Etf

[∑tf+1−1
τ=tf

Si[τ ]
]
− Tfλi

]
+NBT 2

f

+V
∑
i

∑tf+1−1
τ=tf

EtfPi(Si[τ ]).

Here the Pi(.) is a function only of the rate Si[τ ] since the
channel state is fixed. We note that this is the metric used for
the VFDP policy in Section IV for the case of a single channel
state. For brevity, we will use vector notation. Let S[τ ] =
(Si[τ ])T and P (S[τ ]) =

∑
i Pi(Si[τ ]). Then the above drift

+ penalty expression can be written as

−2Q[tf ]T

tf+1−1∑
τ=tf

EtfS[τ ]− Tfλ

+NBT 2
f

+V
∑
i

tf+1−1∑
τ=tf

EtfP (S[τ ]).

We note that the rate vectors S[τ ] have a particular structure;
within each frame S[τ ] is a vector which is either all zero,
or which is non-zero in just one component i. We note that
at every tf the VFDP policy chooses that i which achieves
the minimum value of the above expression. Also within each
frame the VFDP policy chooses that rate (or rate vector) which
achieves the minimum value of the term within the sum over τ .
Therefore, the drift + penalty expression above can be further
bounded above using the drift + penalty for a randomized
policy which we define as follows.

LetR be the set of all rate vectors and letRi denote the rate
vectors which are non-zero in the ith component. Suppose we
solve (4) and obtain βr (here again the dependence on channel
state is suppressed). Let βi =

∑
r∈Ri

βr. Then the above drift
+ penalty expression can be bounded above as

NBT 2
f − 2Q[tf ]T

∑
i

βi

tf+1−1∑
τ=tf+Tr

∑
r∈Ri

βr
βi
r − λTf


+V

∑
i

βi

tf+1−1∑
τ=tf

∑
r∈Ri

βr
βi
P (r).

Here the bound holds because the rate terms are positive and
so the terms in the sum for τ ∈ {tf , . . . , tf + Tr − 1} can be
left out and the power expended would be zero if there is a
switch. Thus, for our policy we have that

Etf [L(Q[tf+1])− L(Q[tf ])] + V

tf+1−1∑
τ=tf

∑
i

Pi[τ ]

≤ NBT 2
f − 2Q[tf ]T

 tf+1−1∑
τ=tf+Tr

∑
r∈R

βrr − λTf


+V

tf+1−1∑
τ=tf

∑
r∈R

βrP (r),

since
∑
i βi
∑

r∈Ri

βr

βi
(.) =

∑
r βr(.).

We note that if λ is in the interior of Λ1 then it is possible
to obtain βr for a λ+ ε where ε is a vector of all ε > 0. For
such a βr we have that the expected drift + penalty is

≤ NBT 2
f − 2Q[tf ]T [(Tf − Tr)(λ+ ε)− λTf ]

+V Tfp
∗(λ+ ε).

Using the technique of telescoping sums [4] across the frame
indices f ∈ {0, . . . ,K − 1} we have that

V

tK−1∑
τ=0

∑
i

Pi[τ ] ≤ L(Q[0]) +
∑
f

NBT 2
f

+V tKp
∗(λ+ ε)− 2

∑
f

Q[tf ]T [(Tf − Tr)(λ+ ε)− Tfλ]

As in [2], if Tf is chosen as Tr + (
∑
iQi[tf ])

α, then it is
possible to prove that there exists a non-negative constant C0

such that the above expression can be written as

V

tK−1∑
τ=0

∑
i

Pi[τ ] ≤ L(Q[0]) + C0

∑
f

Tf + V tKp
∗(λ+ ε).

Therefore the average power of the VFDP policy can be
obtained as

p(µV ) ≤ lim
K→∞

L(Q[0]) + C0

∑
f Tf

V tK
+ p∗(λ+ ε),

=
C0

V
+ p∗(λ+ ε).

By choosing ε ↓ 0 as V →∞ it is then possible to show that
limV→∞ p(µV ) = p∗(λ). The proof of stability, i.e., q(µV ) <
∞ is similar to that in [2] and is not presented here.
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