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Abstract
Manufacturing has experienced tremendous changes from industry 1.0 to industry 4.0 with the advancement of technology
in fast-developing areas such as computing, image processing, automation, machine vision, machine learning along with
big data and Internet of things. Machine tools in industry 4.0 shall have the ability to identify materials which they handle
so that they can make and implement certain decisions on their own as needed. This paper aims to present a generalized
methodology for automated material identification using machine vision and machine learning technologies to contribute to
the cognitive abilities of machine tools as wells as material handling devices such as robots deployed in industry 4.0. A dataset
of the surfaces of four materials (Aluminium, Copper, Medium density fibre board, and Mild steel) that need to be identified
and classified is prepared and processed to extract red, green and blue color components of RGB color model. These color
components are used as features while training the machine learning algorithm. Support vector machine is used as a classifier
and other classification algorithms such as Decision trees, Random forests, Logistic regression, and k-Nearest Neighbor are
also applied to the prepared data set. The capability of the proposed methodology to identify the different group of materials is
verified with the images available in an open source database. The methodology presented has been validated by conducting
four experiments for checking the classification accuracies of the classifier. Its robustness has also been checked for various
camera orientations, illumination levels, and focal length of the lens. The results presented show that the proposed scheme
can be implemented in an existing manufacturing setup without major modifications.

Keywords Industry 4.0 · Image processing · Machine vision · Machine learning · Material classification · Support vector
machine

Introduction

Industry 4.0 is a newly emerging concept which is multidis-
ciplinary and complex in nature (Moeuf et al. 2018). Context
awareness, fully automatic, autonomy, flexibility, reliabil-
ity, accuracy, modularity, digital presence, scalability, agility,
resilience are some of the characteristics of industry 4.0
(Mittal et al. 2019). These are being realized through many
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evolving technologies such as machine learning, big data,
and analytics, cyber-physical systems, internet of things,
virtual reality, and augmented reality. Characteristics such
as context awareness, fully automatic and autonomy can
be achieved through machine learning algorithms. Depend-
ing on a particular application, various machine learning
algorithms like regression, decision trees, support vector
machines (SVM), k-Nearest Neighbor, clustering and neural
networks have already been explored. The cognitive behavior
of machine tools and associated material handling devices
such as robots can be enhanced with the help of machine
learning. The importance of cognitive abilities of machine
tools was emphasized by Zhao and Xu (2010) and Woods
(1985). Shea et al. (2010) have proposed a cognitive machine
shop. There had been plenty of work done on the application
of machine learning techniques in manufacturing to solve
a plethora of problems. For instance, Vejdannik and Sadr
(2018) used probabilistic neural networks to automatically
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carry out microstructural characterization and classification.
Strese et al. (2017) used Naive Bayes and classification tree
for classifying meshes, stones, glossy surfaces, wooden sur-
faces, rubbers, fibers, textiles, papers, and foams.

Demir (2018) used SVM for classifying textured images
based on a histogram of oriented gradients. Denkena et al.
(2018) implemented machine learning algorithms like k-
Nearest Neighbor, neural networks, SVM and decision tree
for material identification during machining of cylindrical
workpieces. Kwon et al. (2018) have applied deep neural
work for classifying the melt pool images in laser melting,
while Kucukoglu et al. (2018) combined neural networks
with wearable technology to identify defective assembly
processes. Pimenov et al. (2018) have employed artificial
intelligence methods to predict the roughness of surfaces
by monitoring wear on the face mill teeth. Various machine
learning techniques and their applications for several man-
ufacturing related applications are described in deatail by
Pham and Afify (2005). Still, many narrow areas of man-
ufacturing are left unexplored, which would offer exciting
solutions to many problems related to manufacturing. This
would be leading to the realization of industry 4.0 along with
other technologies mentioned earlier. Machine learning by
itself shall not be the only tool available for the realization
of industry 4.0, but machine vision combined with machine
learning could address a wide variety of problems.

Machine vision, also known as computer vision in gen-
eral, is the technology that enables machines to visually
understand their surroundings with the aid of one or more
vision sensors along with an application specific software.
For obtaining the desired results, the required intensity of
illumination of an object or scene may also vary from appli-
cation to application and in some cases from manufacturer
to manufacturer of machine vision systems. However, the
amount of illumination has to be of a constant value for a
given application.Machine vision has replaced human vision
in many areas of manufacturing and other fields as well. For
instance, Tarlak et al. (2016) have developed a method for
measuring the color of food materials using machine vision.
Whereas, Kita et al. (2017) presented the applications of
machine vision in manufacturing. Though machine vision
by itself is sufficient enough to deal with the majority of the
problems in many fields of engineering, it is being applied
alongwithmachine learningmethods to unleash the possibil-
ities of introducing cognition in manufacturing. Experiments
of this typewere already carried out bymany researchers. Sil-
vén et al. (2003) employed nonsupervised clusteringmethods
for inspection of wood from colored images. Lin et al. (2018)
automated the defect inspection process of LED bulb chips
using convolutional neural networks along with machine
vision. Joshi et al. (2018) developed a machine vision sys-
tem for inspecting small parts employing machine learning
methods.

Color models are mathematical descriptions of color dis-
tribution in an image. There aremany colormodels available,
some among them are RGB, CMY, HSI, YIQ and L*a*b
(Wen et al. 2004). This paper makes use of the RGB color
model for extracting the features as input to a machine learn-
ingmodel. RGB colormodel is an additivemodel in the sense
that different proportions of red, green and blue when added
will give different colors. All colored images are made up of
different proportions of RGB colors.

Meshes, stones, glossy surfaces, wooden surfaces, rub-
bers, fibers, textiles, papers, and foams were classified using
machine learning methods as presented by Strese et al.
(2017). Fabric, metal and tree surfaces textures are also clas-
sified using a histogram of oriented gradients (HOG) by
Demir (2018). This technique cannot classify the materials
either metallic or nonmetallic with same texture and different
colors. HOG can detect textures only because of the patterns
present in the textures irrespective of the visual appearance.
Hence, colors of the surfaces which possess same texture
cannot be differentiated using HOG. So, there is a need for
another methodology. An effort to identify cylindrical work-
pieces during machining using machine learning methods
is demonstrated in Denkena et al. (2018). Textures of some
materials can be found in a database aswell (Fritz et al. 2004).
Based on the RGB values of an image, printed fabric pattern
color differentiation is carried out by Kuo et al. (2008). A
clearly defined visible research gap could be found here on
the classification of flat material surfaces of metallic or non-
metallicmaterialswith same or different texturewhichwould
differ visually during machining. For materials such as Alu-
minium, Copper, and Wood, there is no generalized method-
ology available for their classification and no such published
data set is available, to the best of our knowledge. Hence, the
aim and objective of this work are to identify and classify
any flat materials at macroscopic level during machining so
that machine tools are aware of the type of material they are
machining, which is critical for taking certain decisions so
as to adjust feed rate, depth of cut and switching of coolant,
etc. The materials considered for classification in the present
work are Aluminium, Copper, Wood, and Mild steel.

Novelty

The features mentioned in the literature for classification
of the surfaces are textures of the surfaces, acceleration,
and force signals. Collecting these features is expensive and
they are also not suitable for classifying the materials dur-
ing machining. Hence, the mean values of red, green, and
blue are proposed as novel features for the classification
work reported in the paper. The implementation of SVM
for classifying the engineering materials particularly during
machining has not yet been reported in literature. Hence, a
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novel methodology of using SVM is proposed for the first
time in this work to classify the materials during machining.

With this introduction, the rest of the paper is constructed
as follows. The methodology proposed is presented in the
next section followed by details on the experimental setup
used in the collection of images. The mathematical formula-
tion related to image processing towards feature extraction,
histograms, correlation plot and a box plot of features along
with a description of dataset are presented subsequently. A
section on “Training the machine learning model” is allo-
cated to explain the details of the training of SVM.The results
and discussions are presented thereafter followed by conclu-
sion and future research.

Proposedmethodology

Based on the research gap identified, a generalized method-
ology is proposed which is shown in Fig. 1. This scheme
combines machine vision, machine learning, and a data set
of surface images of Aluminium, Copper, Medium density
fiberboard (MDF) and Mild steel-rusted for demonstrating
the methodology. All images have been acquired with the
ambient light of intensity of 37 lx and without any special
light effects. Features are extracted by processing the entire
data set and the machine learning model has been trained
for classification. To get rid of the effect of ambient light
disturbance over the material, a strict lighting provision
needs to be adopted, which is not standardized as different
manufacturers supply diverse lighting provisions to meet
versatile requirements. However, the proposed methodology
remains the same and can be applied under any kind of
illumination provided all such images are collected with the
same amount of illumination.

To summarize, the contributions of this research work are,

• Development of a generalized methodology for identi-
fication of materials using machine vision and machine
learning algorithms.

• Means to impart perception and decision making abilities
of machine tools to mimic human cognition as mentioned
by Dowe and Hern (2012) and Hien et al. (2017) to facil-
itate selection of suitable machining parameters based on
the material identified.

• Development of Technology for the machine tool manu-
facturers for manufacturing intelligent machine tools.

Experimental setup for image collection

The machining operations applicable for flat material sur-
faces include drilling, milling, grinding, polishing as needed.
In all these operations, the flat surface of the material will be
kept perpendicular to the tool. Similarly, it is better to mount
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Fig. 1 Proposed methodology

Fig. 2 Experimental set up used for the generation of data set

the camera perpendicular to the surface so that high-quality
images of the material surfaces could be obtained. Further
in machine vision applications, frames are extracted from a
video acquired by the camera and the same is also mimicked
in gathering the data set of surfaces of flat materials towards
feature extraction. A DSLR camera is used with the settings
that can be found on a typical industrial smart camera. It
is worth mentioning here that the settings of any industrial
smart camera will always vary from application to applica-
tion. The experimental set up used for the generation of data
set is shown in Fig. 2. It consists of a Nikon D5300 DSLR
camera with AF-P DX NIKKOR 18–55 mm lens mounted at
the endof anABBrobot attachedwith afixture for holding the
camera. The camera is connected to a Laptop through HDMI
cable to preview the surfaces of materials before scanning
them. The robot arm is brought to the horizontal position so
that it holds the camera normal to the material surface under
it. The lens is zoomed to 55 mm to increase the field of view
so that only surface under the camera could be captured in
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the framewhich would eliminate further image processing to
remove the unnecessary regions of the frame. The distance
between the material and the lens is kept as 26 cm. The pro-
cess is carried out at the light intensity of 37 lx. This intensity
of light has a direct effect on the quality of the image cap-
tured and hence, in the present work, no special light was
used. Video settings were adjusted to 1080×920 pixels and
frame rate to 30 fps, as most of the industrial cameras are
capable of providing these settings.

Automatic exposure on the camera is used initially for
scanning the surfaces of materials but it did not give satis-
factory quality for all material surfaces and hence manual
exposure is adapted for scanning. The scanning process was
initiated by ensuring that there is no reflection of any light
from the surface of the material being scanned. The mate-
rial is manually moved under the camera as it could scan the
surface that passes under it automatically. The surfaces of
Aluminium,Mild steel-rusted,MDF and Copper are scanned
with the above-mentioned settings and procedure. Care is
also taken to scan the entire area of the materials in all cases.

Image processing and feature extraction

After scanning, the files are downloaded to a PC and the
videos are further separated into individual frames, which
is how it is being done in machine vision applications. The
frames of different material surfaces are stored separately
and all folders are manually inspected to remove the frames
that contain geometric discontinuities and wear scars.
The size of each frame is 1080×920 and frame format
considered is “jpg”.

Feature extraction

The images have been processed using “Open cv”, an open
source library for machine vision. The result of this process-
ing is the average values of RGB for each frame of each
category of material. Thus, the average values of three com-
ponents of the RGB color space of each frame are arranged
with a total of 3559 rows and number of rows is kept equal to
the number of samples in the data set. Hence, the size of the
data set now becomes 3559×4. The four columns here are
blue, green, red and class label respectively. Let f (x,y) cor-
responds to the pixel (x,y), then the digital gray level image
can be represented by (Wen et al. 2004),

f (x, y) �
M∑

i�1

N∑

j�1

g(i, j)δ(x − i, y − j) (1)

here M×N is the size of the image, g (i, j) is original contin-
uous image and δ (i, j) is a delta function. For a color image,
f (x, y) can be represented as,

f (x, y) � [
fr (x, y), fg(x, y), fb(x, y)

]
(2)

where

fk(x, y) �
M∑

i�1

N∑

j�1

gk(i, j)δ(x − i, y − j)

and k� r, g, b, are red, green and blue components of the
RGB color model respectively.

Equation (2) can be used for the extraction of total values
of RGB colors of an image.

The histograms that show the distribution of pixel inten-
sities in a digital image for all surfaces of the materials
considered in this work are plotted and shown in Fig. 3.
The right side of the histogram corresponds to the brighter
pixel intensities and the left side corresponds to the darker
image. For an image of normal exposure, the histogram col-
ors should be distributed between left and right extremes of
the histogram.

It is clear that the images are neither brighter nor darker
and hence processed for obtaining RGB color components.
These components for all images of the four materials are
extracted and accordingly, a data set is prepared. Aluminium
has 883 instances, Copper has1075 instances, MDF has 812
instances and Mild steel-rusted has 789 instances. The final
data set for classification is obtained by combining the four
data sets that comprise of all instances of the materials con-
sidered. The description of this data set along with individual
data set descriptions of four classes is presented in Table 1.
A close look at the description of each data set reveals that
the standard deviations of red, green and blue within each
class are not the same and means are also different. A well-
conditioned data for machine learning problems does not
look like this. Hence, the data is conditioned before feeding
it to themachine learning classifier as described in Pedregosa
et al. (2011). The mean and standard deviations of the red,
green and blue colors of the RGBmodel of final data set also
have different values and hence, the final data set also need to
be normalized before training themachine learning classifier.

Figure 4 gives the split-up red, green and blue planes of
Aluminium along with three planes combined. All images
of surfaces of four materials in the data set are made up
of three such planes which when combined represent the
image in RGB color model. All the pixels in three planes
are represented by values from 0 to 255 according to the
intensity of color. The valueswill be closer to 255 for brighter
intensities and closer to 0 for darker intensities. When all
the pixel values of a plane are added together, the average
value of the color distribution of that plane is obtained. These
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Fig. 3 Surface images along with their histograms: a aluminium,
b medium density fibre board, c copper, and d mild steel-rusted

Table 1 Data set descriptions of the material surfaces

Blue Green Red

Aluminium data set description

Count 883 883 883

Mean 123.107480 126.156857 127.406257

σ 10.281995 9.748596 8.672441

Min 111.611409 114.806231 116.343236

25% 117.406774 120.536919 122.126947

50% 121.410352 124.671336 126.387364

75% 124.857405 128.200845 129.822057

Max 188.406082 188.261246 183.817523

Copper data set description

Count 1075 1075 1075

Mean 97.431928 124.263844 143.776428

σ 2.260549 2.602631 2.781498

Min 92.233418 118.714769 138.512082

25% 95.764794 122.359241 141.671372

50% 97.110008 123.709813 142.865523

75% 99.449474 126.871722 146.450147

Max 102.682103 129.762743 149.716393

Medium density fibre board data set description

Count 812 812 812

Mean 123.475938 138.035393 147.847038

σ 4.374849 4.559062 3.957009

Min 110.365963 127.084963 138.991082

25% 121.581304 135.237657 145.109948

50% 124.074886 138.137221 147.797543

75% 126.400773 141.528720 150.585891

Max 131.589578 147.199079 156.593704

Mild steel-rusted data set description

Count 789 789 789

Mean 94.147082 107.788622 117.305564

σ 3.591528 4.719103 5.735289

Min 86.576721 96.979002 104.895604

25% 90.887907 105.097553 112.905828

50% 94.148713 108.635486 119.102255

75% 97.647802 111.408794 121.065658

Max 100.180730 114.752816 126.131978

Final data set description

Count 3559 3559 3559

Mean 109.015942 124.223124 134.775294

σ 14.884114 11.816716 13.283917

Min 86.576721 96.979002 104.895604

25% 96.339057 117.986286 123.058197

50% 100.591029 123.920144 140.410541

75% 122.412190 130.775500 146.276710

Max 188.406082 188.261246 183.817523

σ � standard deviation of the features
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Fig. 4 Split up RGB planes of aluminium

average values of the three components of RGB are different
for different surfaces of materials considered in the present
work.

Figure 5 helps to visualize the distribution of surface
images of flat materials considered based on the pairwise
combination of values of the three features. The four classes
of materials have a clear space separating them, which can
be seen in Fig. 5. It can also be understood that given two
features, one class can be easily distinguished from the other
class. Figure 6 shows the distribution of blue, green and red
features in the entire data set.

Training themachine learningmodel

This is a multi-class classification problem with four class
labels that are the four materials and three features for each
class. The three features of each class are the blue, green and
red color components of the RGB color model. The Support
VectorMachine is considered in this work to solve this multi-
class classification problem.

Support vector machine (SVM)

It is considered to be an extension of perceptron. In these
algorithms, the margin, which is the distance measured
between the separating hyperplanes, also called decision
boundaries, is to be maximized for classification. The train-
ing samples which are very near to the decision boundary are
called support vectors. It is a practice to have decision bound-
aries with a large margin to avoid overfitting. For a binary
classification problem, the positive and negative hyperplanes
which are parallel to the decision boundary are represented
by a mathematical expression as follows (Raschka and Mir-
jalili 2007).

Let, w0 � bias vector, wT� weights vector, and xpos and
xneg are the features on right and left side of the separating
plane respectively, then

w0 + wT xpos � 1 (3)

w0 + wT xneg � −1 (4)

If Eq. (4) is subtracted from Eq. (3), the resulting equation
will be,

wT (xpos − xneg) � 2 (5)

Equation (5) is normalized by using a vector ‘w’ as fol-
lows.

wT (xpos − xneg)

‖w‖ � 2

‖w‖ (6)

‖w‖ �
√√√√

n∑

j�1

w2
j (7)

here ‖w‖ is the norm of the vector to the hyperplane. The
left-hand side of Eq. (6) can be interpreted as the distance
between positive and negative hyperplanes which is called as
the margin and it needs to be maximized. This margin of the
SVM can be maximized with the constraint that the samples
should be correctly classified which can be represented as
follows,

w0 + wT x (i) ≥ 1, if y(i) � 1
w0 + wT x (i) ≤ −1, if y(i) � −1

}
(8)

where, i� 1…n. and n � number of training samples in the
dataset.

The right-hand side of Eq. (6) is minimized by using
quadratic programming, in order to optimize the margin
between the hyperplanes. The linearly inseparable data is
used for creating nonlinear combinations of the original fea-
tures to project themon to a high dimensional space through a
mapping function φ so that the problem under consideration
becomes linearly separable. For linearly inseparable classi-
fication problems, kernel SVM could be used as presented
below.

Let (x(i), y(j)) be a pair of samples or features, then the
kernel function for this can be defined as follows,

K (x (i), x ( j)) � φ(x (i))Tφ(x ( j)) (9)

The most used kernel is the Radial Basis Kernel (RBF),
also known as Gaussian kernel, and is expressed by,

K (x (i), x ( j)) � exp

⎡

⎣−
(∥∥x (i) − x ( j)

∥∥
2σ 2

)2
⎤

⎦ (10)
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Fig. 5 The pairwise plot of features

Fig. 6 Box plot of features

here, σ is the standard deviation of the features. NowEq. (10)
can be rearranged as,

K (x (i), x ( j)) � exp

(
−γ

∥∥∥x (i) − x ( j)
∥∥∥
2
)

(11)

whereγ � 1/2σ 2 which is the free parameter that needs to be
optimized. Kernel function measures the similarity between
a pair of samples and the result will be 1 if they are similar
otherwise zero if they are dissimilar. The classifier is trained
till it gets converged as per condition set which is shown in
Fig. 7. The convergence parameters α and β represent the
functions of a feasible solution of quadratic programming to
maximize the margin between hyperplanes and ε � 0.001 as
mentioned by Chang et al. (2011).

Though the methodology proposed in the work is used in
the context of manufacturing the same can also be consid-
ered as a generalized methodology for classifying any other
materials based on feature extraction and training.

Some of the images of KTH-TIPS database (Fritz et al.
2004), which have been used initially for checking the capa-
bility of the proposed methodology to identify the different
group of materials are shown in Fig. 8.

For multi-class classification under study, SVM is imple-
mented using Scikit-learn using the “one-against-one”
approach as presented by Pedregosa et al. (2011). The data
set is split into training and testing dataset in the ratio of
70 and 30 respectively. As mentioned earlier, there are 3559
samples in the dataset and hence, the training set consists of

123



Journal of Intelligent Manufacturing

Start 

Split the data into training 
and testing sets

Select the classifier for 
classification 

Tune the parameters and train 
the classifier 

Check for the Accuracy of
classifier using testing data

Max(α,β )<ɛ 

End 
Yes 

No 

Fig. 7 Flow chart for the classifier implementation

Fig. 8 KTH-TIPS database: a cotton, b linen, c sandpaper, d styrofoam

2491 samples and the testing set comprises 1068 of samples.
It is to be noted that due to effective training, SVM achieved
the testing accuracy of 100%. This maximum accuracy is
also validated using tenfold cross-validation. The ability of
the classifier to learn to classify from the data set is measured
by the classification accuracy achieved. The more the accu-
racy, the better is the classifier ability to correctly classify the
data. Classification accuracy is given by,

Table 2 Classification accuracies on images

Sl. no. Classification
algorithm

Training
accuracy (%)

Testing accuracy
(%)

1 SVM 100 100

2 Decision trees 100 92

3 Random forest 100 89

4 Logistic
regression

100 100

5 k-nearest
neighbor

94 94

Accuracy � Samples predicted correctly

Total samples in testing set
× 100% (12)

The proposed methodology is first implemented for clas-
sifying the four classes of textures of images namely,
Sandpaper, Styrofoam, Cotton, and Linen, which are shown
in Fig. 8. Each class consists of 81 samples so the final dataset
has 324 samples. The details related to the classification accu-
racies are presented in the next section.

Results and discussion

The proposed SVM has been trained with four classes of
materials from the database, with 194 training samples and
130 testing samples. Along with SVM, other classification
algorithms are also trained and the results obtained are pre-
sented in Table 2.

Though the data set size is very small, SVM is able to
learn perfectly and exhibited 100% accuracy. On the other
hand, other algorithms did not learn accurately. The reason
for this is that the data set contains images with slight vari-
ations in visual appearance such as different colored images
within the class. SVM is able to learn perfectly due to its
generalization to real-world problems as mentioned earlier.
However, if large samples of variations are included in the
data set, then all algorithms will learn accurately.

The support vectors for the four classes of the database
have been found and presented in Table 3. It is clear that the
linear kernel is best suited as the number of support vectors
for each class is less than half the number of samples.

The SVM presented is able to successfully achieve 100%
classification accuracy which is also validated by tenfold
cross-validation. The number of support vectors for the four
classes of materials is found which are presented in Table 4.
From the table, it is clear that the number of support vectors
for class 0 is 10 when the linear kernel is applied and 30
when RBF kernel is applied. In both the cases, the number
of support vectors is very much less than the number of the
samples of class 0 which is 883 and this is the proof that the
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Table 3 Support vectors for the
four classes of images Label/class Material Number of samples in the data set Number of support vectors

Linear kernel RBF kernel

0 Cotton 81 31 46

1 Linen 81 32 41

2 Sandpaper 81 6 46

3 Styrofoam 81 3 49

Table 4 Support vectors for the
classes Label/class Material Number of samples in the data set Number of support vectors

Linear kernel RBF kernel

0 Aluminium 883 10 30

1 Copper 1075 7 22

2 MDF 812 6 26

3 Mild steel-rusted 789 5 22

Fig. 9 Decision boundaries for four classes

SVM is not overfitted and can be generalized. The support
vectors of the remaining classes are also very much less than
the number of samples they contain and this is a proof for
accurate training of classifier without overfitting.

The decision boundaries for the four classes considered
are plotted with the package developed by Raschka (2018)
with two out of the three features, red and green and are
shown in Fig. 9. It can be seen that for the features consid-
ered for plotting, the classes have clearly defined decision
boundaries.

A grid search is performed for tuning the hyperparameters
of the SVM and it is found that penalty parameter C � .1 in
C ∈ [0.0001, 0.001, 0.01, 0.1, 10, 100, 1000] and the free
parameter γ of Eq. 11 become 0.01, and kernel, the linear
kernel in Kernel∈ [linear, RBF] are the best hyperparameters
for SVM. The accuracies of SVM for tenfold cross validation
are found as,

{100, 100, 100, 100, 100, 100, 100, 100, 100, 100}

Hence, the classification accuracy of the SVM is thus
validated using tenfold cross-validation technique. Differ-
ent classification algorithms such as decision trees, random
forest, logistic regression, and k-Nearest Neighbor, VGG-
16 deep Convolutional Neural Network (CNN) (Karen and
Zisserman 2015) with transfer learning were trained on the
same dataset and their classification accuracies are presented
in Table 5. For logistic regression, the classification accu-
racies in both training and testing are achieved 100% for
a C value of 3 and l1 penalty, where C is a regularization
parameter. It is clear from the training accuracy and test-
ing accuracy columns that other classification algorithms are
able to achieve a classification accuracy of 100%. For real-
world applications, SVM would perform better than other
machine learning algorithms as mentioned by Scholkopf
et al. (1997). Hence, SVM can be adapted for the classi-
fication purpose in the proposed methodology. Further, as
other classification algorithms, except deep CNN, are also
able to accurately classify the flat materials considered. It is
clear from Table 5 that it is absolutely possible to identify the
flat materials including metallic and non-metallic provided
a machine learning algorithm is trained with their features.
This can be extended to include any number of materials.
Also observed that, CNN training consumed 150 min which
is very expensive.

The confusionmatrix is a tabular layout that visualizes the
performance of the classifiers in thefield ofmachine learning.
Confusion matrix gives the total number of false positives,
true positives, false negatives and true negatives of the classi-
fier. A well-trained classifier has to have only true positives.
The confusion matrix of the trained SVM with the testing
data of 1068 samples is shown in Fig. 10 with True labels
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Table 5 Classification accuracies with other algorithms

Sl. no Classification
algorithm

Training
accuracy (%)

Testing accuracy
(%)

1 Decision trees 100 100

2 Random forest 100 100

3 Logistic
regression

100 100

4 k-nearest
neighbor

100 100

5 Convolutional
neural net

91 75

Fig. 10 Confusion matrix of the trained SVM

versus Predicted labels. The true labels are Aluminium, Cop-
per, MDF and Mild steel-rusted respectively and this order
applies to predicted labels as well. The confusionmatrix con-
tains only true positives, which is an indication of the fact
that the model can classify correctly and is also accurate
enough.

The number of training samples considered in the training
data set is 2491. The training and testing accuracies of the
SVM classifier are checked with the size of the data set,
which is graphically presented in Fig. 11. It is clear that the
training accuracy remains at 100% irrespective of the size of
training data set whereas the testing accuracy is raised from
99 to 100% in between the sample size of 250 to 500 and
remained there throughout the entire sample size. In machine
learning problems, it is desirable always to have large amount
of data, as the classifiers learn from the data. So, the data set
is prepared while keeping this in mind with total samples of
3559 which includes training and testing samples.

Checking for robustness

Four real-time experiments have been performed to check the
robustness of the methodology and the results are presented
in Table 6. One is based on the data collected in the similar
conditions where data for training the classifier is collected

Fig. 11 Accuracy versus number of training samples

and three others are on the data collected in different condi-
tions. The same materials were used for data collection in all
the experiments. The camera ismoved over the surfacesman-
ually under two different illuminations at 25 lx and 265 lx
respectively and using a robotic arm at 77 lx. 25 lx and 77 lx
are the light intensities due to ambient light and 265 lx is due
to ambient and ceiling light in the lab. The ceiling light is
introduced to induce some illumination difference over the
surfaces.

The images of the surfaces under these intensities are
presented in Fig. 12. When the intensity of light falling on
anymetallic/non-metallic surface changes, the light reflected
from the surface also changes. This reflecting light impacts
the surface visually which is also verified by extracting the
mean values of red, green and blue. These values will remain
the same for a particular material under a particular intensity
of illumination and will get changed along with the inten-
sity of illumination. For shining surfaces such as metals, the
reflected light will create bright spots on the surfaces. These
bright spots will significantly change the mean values of the
red, green, and blue. To avoid the formation of these bright
spots, it is important to maintain a controlled intensity of
lighting over the surfaces of the materials. This will ensure
that the features extracted for classification will be able to
differentiate the surfaces. As long as there are no differences
in the visual appearance of the surfaces, they can be classi-
fied accurately using machine learning and machine vision
techniques.

The SVM classifier is able to perform very well with an
accuracy of 100% on all the materials based on the data col-
lected at similar conditions. But the performance is not good
on the data collected in other conditions. This is due to the
different levels of illuminations of the surfaces of the mate-
rials. When the intensity of light is 265 lx, there are even
some reflections from the Aluminium surface. From Table 6,
it is clear that the SVM is able to maintain the classification
accuracy very well, as the experiment is conducted at similar
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Table 6 Experimental
evaluation of proposed
methodology at different
illumination levels

Sl. no. Class Experiment at similar
conditions

Experiment at 25 lx Experiment at 77 lx Experiment at 265 lx

Supplied Predicted Supplied Predicted Supplied Predicted Supplied Predicted

1 0 301 301 204 204 444 420 747 281

2 1 1212 1212 261 0 681 681 519 0

3 2 975 975 246 0 597 68 456 0

4 3 789 789 434 119 855 855 564 0

Images at 37 lx Images at 25 lx Images at 77 lx Images at 265 lx

(a)

(b)

(c)

(d)

Fig. 12 Surface images under different lighting conditions: a aluminium, b copper, c mild steel-rusted, d MDF

illumination levels where the data is obtained for training the
SVM.

In the remaining experiments, the SVM is not able to
maintain the classification accuracy due to differences in the
illumination levels during the experiments for image collec-
tion. As the intensity of light increases, as seen in the fourth
experiment, the performance of SVM becomes deteriorated.
Hence, this validates the proposed generalized methodology

for the identification and classification of materials using
machine vision and machine learning.

The constraint on the proposed generalized methodology
is that the same intensity of illumination at which the data is
collected should be maintained while carrying out the identi-
fication of the materials and this is the common prerequisite
of machine vision applications. To support this statement,
two more experiments have been conducted with different
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Table 7 Experimental evaluation of proposed methodology with camera orientations and scale

Sl. no. Class Camera orientation with the vertical axis (in deg.) Camera lens at 35 mm
focal length

15 30 45

Supplied Predicted Supplied Predicted Supplied Predicted Supplied Predicted

1 0 130 3 147 05 143 03 121 0

2 1 132 104 139 94 152 105 138 92

3 2 132 15 132 19 154 19 132 0

4 3 132 19 126 54 132 31 143 36

camera orientations and scale of the lens and the results are
presented in Table 7. From these results, it is observed that
the orientation of the camera and scale of the lens have an
adverse effect on the performance of the classifier. To address
this challenge, a lot of data corresponding to these conditions
have to be supplied to the classifier during training.

Conclusion

A novel generalized methodology based on Support Vec-
tor Machine had been developed to accurately identify and
classify flat materials being machined in a typical manufac-
turing environment. This was accomplished using machine
vision and machine learning techniques. A data set consist-
ing of 3559 samples was prepared. The machine learning
classifier, SVM, was trained with 2491 samples and tested
against 1068 samples for checking the classifying accuracy.
The accuracy achieved is 100% which was validated by ten-
fold cross-validation technique and the accuracies of 10 cases
agreed with the previously achieved values. The classifica-
tion accuracy of other cases is also determined and presented.
The deep CNNVGG-16 is also trained based on the data sets.
These results are not as satisfactory as those obtained from
SVM. The training time needed for CNN is 150 min, which
is computationally expensive. Though deep CNN can learn
features automatically, they are not suited well for the clas-
sification of the materials considered in the present task.

An insight was presented graphically on training and test-
ing accuracies of the classifier with the size of 2491 data set
and concluded that a minimum of 500 samples is required
for achieving the 100% classification accuracy in training as
well as in the testing of the classifier. This 100% accuracy
is subjected to the limitation that same lighting condition
need to be maintained for all images, which has practical
limitations as well. The robustness of the proposed method-
ology was also checked for multiple camera orientations,
illumination, and focal lengths. The generalized method-
ology proposed can be applied in a factory equipped with
conventional machine tools with minor modifications. This

scheme can also be recommended in a factory equipped with
state-of-the-art modern machine tools without any major
modifications. In fact, this technology can be integrated with
themachine tools being produced today based on their nature
of machining to make them more intelligent than ever and
enable them to be Industry 4.0 compliant by incorporating
the perception and decision-making cognitive abilities. The
proposed methodology will be applied to machine tools and
robots commissioned in smart manufacturing set up. These
results will be made available in future communications.
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