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Abstract—We consider a cross-layer packet scheduling problem
with hybrid ARQ (HARQ) in fading channels in which the channel
state information at the transmitter (CSIT) is known only after
one slot delay. Packets arrive according to a Bernoulli process at
the transmitter, and each packet is required to be timely-delivered
at the receiver, within a delay of d time-slots, and is dropped, if
the delay deadline is not met. Since the transmitter has only a
delayed CSIT, a HARQ with Chase combining is employed for
error recovery. The problem is to decide the transmit-energy in
each time-slot such that the timely-throughput is maximum for a
given average transmit-energy constraint. We pose this problem as
a constrained Markov decision process, and provide an optimum
policy based on Lagrangian relaxation. The optimum Lagrangian
multiplier is obtained using a subgradient method. We obtain the
structure of the optimum policy, based on which we propose a
computationally simple policy READER that requires no CSIT.
We show that for large Doppler spread (or mobility), the timely-
throughput of READER is close to the optimum policy. We also
provide two more policies: an optimum policy assuming perfect
CSIT with zero delay, and a naive randomization policy, and
compare the throughput performance of the proposed policies.

Index Terms—Chase combining, constrained Markov decision
process (CMDP), delayed CSIT, hybrid ARQ (HARQ), maximal
ratio combining (MRC), packet delay deadline.

I. INTRODUCTION

DESIGN of low latency systems with high throughput is
desirable, as it is envisaged that nearly 79% of total

wireless mobile traffic in 2022 would be video traffic [1]. This
motivates us to study timely-throughput1 optimal schedulers. In
this work, we are interested in designing a timely-throughput
optimum scheduler that efficiently chooses transmit-energy for
each transmission opportunity.

Power allocation for fading channels mostly considers either
perfect CSIT (with zero delay), or no CSIT [2]-[6], and a very
few consider imperfect CSIT [7]. When there is no CSIT, or
imperfect CSIT, to mitigate fading, diversity techniques and/or
hybrid ARQ (HARQ) processes (if feedback is available) are
used. In type II HARQ, where retransmissions of a packet are
combined, there are mainly two methods: i) Chase combining
HARQ (CC-HARQ) and ii) incremental redundancy (IR-ARQ)
[2]. Type II HARQ is particularly suitable for short packet
communications (e.g., Internet of Things).
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1Timely-throughput is defined as the fraction of time-slots that deliver
packets within the delay deadline requirement.

A. Previous Work

Resource allocation with HARQ for fading channels has
gained much attention in the recent past among the cross layer
community [3]-[7]. For timely-throughput, only a few works
[8]-[11] have been reported in the literature.

A downlink scheduling problem with delayed CSIT is studied
in [3] with Markov ON/OFF channels. A Whittle’s index
policy for this problem has been studied and its asymptotic
optimality properties in the limiting regime of many users has
been shown. In [4], a delay optimal scheduling problem is
studied for a multistate fading channel. [5] studies the tradeoff
between energy efficiency and retransmission attempts in CC-
HARQ. [6] proposes an HARQ scheme that outperforms the
conventional HARQ schemes, but without any constraints
on transmit-energy. [7] studies CC-HARQ with imperfect
CSIT, and explores the tradeoff between energy efficiency
and throughput. None of the work consider delay deadlines,
delayed CSIT, and transmit energy consumption collectively
for throughput optimal scheduling, which is the focus of our
work.

Scheduling packets with delay deadlines has been explored
in the following works. In [8], Collins and Cruz consider an
average energy minimization problem over a finite horizon with
an average packet delay deadline constraint. They show that the
optimum policy is to transmit when the queue-length is larger
than a channel-state dependent threshold. Fu et al. consider
a finite horizon throughput optimal scheduling problem with
individual packet deadlines and with a total energy constraint
[9], and obtain optimal policies based on dynamic programming.
An offline throughput optimal scheduler is proposed in [10],
where packet arrivals are known a priori. Almost all the work
described above assume causal CSIT, and provide information
theoretic rate optimal solutions. In real-time systems, it is
not possible to obtain CSIT without any delay. Also, rate
maximization is not practical, as Shannon’s capacity formula is
valid only in the regime of infinite codeword length, and hence,
is not suitable for systems with packet delay deadlines. For this
reason, we consider a signal-to-noise ratio (SNR) model, which
prescribes a target SNR to achieve a certain reliability [11].
In this work, we consider a cross layer scheduling problem
with CC-HARQ in fading channels to maximize the timely-
throughput with a limitation on the average transmit-energy,
where only a one slot delayed CSIT is available.

B. Contributions of the Paper

In this work, we have the following contributions:
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1) We propose a cross layer scheduling problem in which
the sender has only one-slot delayed CSIT, and each
packet has an individual delay deadline constraint. In
the literature, the study of CC-HARQ is limited to a
constraint on the number of retransmissions which does
not take into account the delay between retransmissions.
As the delay between retransmissions is of significance,
it is important to consider timely throughput rather than
the number of retransmissions.

2) The cross layer problem i) schedules timely packet
transmissions (at the MAC layer), and ii) combines
retransmissions (at the PHY layer) by maximal ratio
combining (MRC) for optimum use of transmit-energy
by CC-HARQ. Also, the sender has a time-average
transmit-energy constraint, whereas much of the literature
considers only an expected power constraint. We solve
the problem of choosing an optimum transmit-energy that
maximizes timely-throughput in a time-average transmit-
energy constrained system.

3) We obtain an optimal policy, and show that the optimum
policy is a randomization of two deterministic stationary
policies, both of which are optimal policies of a relaxed
Lagrangian problem. From the structure of the optimal
policy, we propose a computationally less complex policy,
READER, which requires no CSIT. We show that the
timely-throughput of READER is close to the optimal
policy for large Doppler spread.

4) We also quantify the throughput loss due to the delay
in CSIT by evaluating the system having perfect CSIT
with zero delay. For small Doppler spread, there is no
performance loss due to delay in CSIT, whereas for
large Doppler spread, there is a loss in throughput due to
delayed CSIT. Also, we compare the optimum policy and
READER with Blind, a policy that naively randomizes
all possible fixed transmit-energy policies.

C. Organization of the Paper

The Paper is organised as follows. We present system model
in Section II and pose an optimum scheduling problem in
Section III. We present the optimum scheduler, and provide
a computationally less complex algorithm in Section IV. In
Section V, we provide a Q-learning policy to obtain optimal
Lagrangian policy, and also provide a subgradient method to
compute optimal Lagrangian multiplier λ∗. Numerical results
are provided in Section VI and conclude in Section VII.

II. SYSTEM MODEL

A. Network Model

We consider a point-to-point communication in which a
sender sends packets across a fading link to a receiver. A
discrete time system is considered in which time is measured
in slots, indexed by t ∈ Z+, where Z+ := {0, 1, 2, · · · }. The
duration of a time-slot is the same as a packet transmission
time.

At the beginning of each time-slot t, either a new packet
arrives at the sender, which is denoted by A[t] = 1, or no
new packet arrives, denoted by A[t] = 0. The arrival process

{A[t], t ∈ Z+} is independent and identically distributed (i.i.d.),
and A[t] ∼ Bernoulli(p), for some 0 < p < 1. A packet upon
arrival is stored in a transmit-buffer until it is successfully
delivered to the receiver, or dropped. Each packet has a delay
deadline constraint of d time-slots, which is defined as follows.
A packet that arrives at time-slot t is required to be successfully
received at the receiver before the end of time-slot t+ d, i.e.,
within a delay of d time-slots. If for some reason, the packet is
not successfully delivered before t+ d, the packet is dropped
from the buffer, which is considered as packet loss.

Transmit Queue: At the beginning of time-slot t, let
Q[t] be the number of packets waiting for transmission in
the transmit-buffer. The packets are numbered 1, 2, · · · , Q[t]
starting from the head of line (HOL) packet, and let the
waiting time of packet i at time-slot t be Wi[t]. Define
W [t] = [W1[t],W2[t], · · · ,WQ[t][t]]. Note that the waiting
time of a packet at its arrival epoch is zero. Thus, the queue
is described by the tuple (Q[t],W [t]).

The departure of the HOL packet during time-slot t is
denoted by X[t+ 1] = 1 (and no departure by X[t+ 1] = 0).
If W1[t] = d and X[t+ 1] = 0, at the beginning of time-slot
t+ 1, the HOL packet has been in transmit-buffer for d+ 1
time-slots and hence, will be dropped at time-slot t+ 1. Thus,

Q[t+ 1]

=

{
Q[t]−X[t+ 1] +A[t+ 1], if W1[t] < d,
Q[t]− 1 +A[t+ 1], if W1[t] = d,

(1)

= Q[t]−D[t+ 1] +A[t+ 1],

where D[t + 1] = 1, if either X[t + 1] = 1, or W1[t] = d;
otherwise, D[t+ 1] = 0. If Q[t]−D[t+ 1] > 0, the waiting
time of packets i = 1, 2, · · · , Q[t]−D[t+ 1] is

Wi[t+ 1]

=

{
Wi+1[t] + 1, if W1[t] = d or X[t+ 1] = 1,
Wi[t] + 1, otherwise. (2)

If there is a new arrival, i.e., A[t + 1] = 1, then the waiting
time of the packet that has just arrived, WQ[t+1][t + 1] = 0.
From (1) and (2), the evolution of queue length and waiting
time can be expressed as

Q[t+ 1] = ΨQ(Q[t],W [t], X[t+ 1], A[t+ 1]), (3)
W [t+ 1] = ΨW (Q[t],W [t], X[t+ 1], A[t+ 1]). (4)

B. Transmission Model

Channel model: Wireless channels vary with time and
mobility of sender/receiver, and can be modelled as a finite
state Markov chain (FSMC) [12]. In a K state FSMC, there
are K channel states, where the channel state represents power
gain. In each time-slot t, the channel state is denoted by G[t] ∈
G = {g0, g1, g2, · · · , gK−1}. Note that the states are ordered
such that 0 = g0 < g1 < g2 < · · · < gK−1. The channel state
(or gain) {G[t] : t ∈ Z+} follows a Markov chain with the
transition probability for each g, g′ ∈ G being

T(g, g′) =

{
0, if |g − g′| > 1,
αg,g′fD, if |g − g′| = 1,

(5)
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Fig. 1. An illustration of scheduling for a delay deadline of d = 2 slots (i.e., a packet can remain in the system for at most 3 slots), G = {g1, g2}, and
energy e2 is such that 2e2 < e1 and 3e2 ⩾ e1. Packets P0, P1, P2, P3, P4, and P5 arrive at the beginning of time-slots 0, 2, 3, 5, 7, and 8, and depart at the
end of time-slots 2, 3, 5, 6, 9, and 10, respectively. Multiple transmissions of packets P0, P2, P4 are combined at the receiver by MRC to meet the target SNR.
In time-slot 3, e2 is just enough for channel gain g2, whereas in time-slot 10, e1 is more than required for channel gain g2, and hence, packets P1 and P5 are
received successfully. Note that the channel gains are known at the sender only after one time-slot delay.

where fD is the Doppler frequency (that depends on the
mobility), and αg,g′ is a parameter that depends on distribution
of fading gain, level crossing rate of fades, and slot duration,
[12, Eqns. (18)–(20)]. We consider a one-slot delayed CSIT,
where the CSIT at time-slot t, denoted by G̃[t], is the channel
state at time-slot t− 1, i.e., G̃[t] = G[t− 1].

Communication model: We consider an SNR model where
the successful reception of a packet requires an SNR of least
γ. In CC-HARQ scheme, the SNR of a packet after combining
is the sum of SNRs of all transmissions of the packet (see
Figure. 1 for an illustration). For a channel state gi > 0, a
transmit energy ei is required to achieve a target SNR of γ in a
single transmission attempt. Since, the sender has only one-slot
delayed CSIT, it may happen that the chosen transmit energy
may not achieve an SNR of γ at the combiner, requiring at
least one more round of HARQ for a successful reception of
the packet. For channel state g0 = 0, no transmit-energy can
achieve the target SNR of γ, and hence, to conserve energy, it
is best not to transmit when G[t] = g0.

If the transmit queue is non-empty, the controller decides
either to transmit the HOL packet (by choosing a positive
transmit energy), or not (by choosing 0 transmit energy). Let
U [t] be the transmit energy chosen by the controller during time-
slot t. Note that U [t] ∈ {0, e1, e2, · · · , eK−1} =: U0, where
0 > e1 > e2 > · · · > eK−1. For retransmission, we choose
transmit-energy from U1 = U0∪{ei−ej : 1 ⩽ i < j ⩽ K−1},
as ei − ejs could possibly reduce average transmit-energy. Let
R[t] denote the sum of SNRs of all previous transmissions of
the current HOL packet at the receiver before time-slot t.

Recall that X[t+1] indicates whether or not the HOL packet
is delivered successfully during time-slot t. We note that when
the action U [t] = 0, X[t+ 1] = 0. For U [t] > 0,

X[t+ 1] =

{
1, if R[t] + U [t]G̃[t+1]

N0/2
⩾ γ,

0, otherwise,
(6)

where N0/2 is the AWGN power spectral density. Note that

R[t+ 1] =

{
R[t] + U [t]G̃[t+1]

N0/2
, if X[t+ 1] = 0,

0, otherwise.
(7)

C. Timely-Throughput

In each time-slot t, at most one packet is successfully
received, which is given by X[t + 1]. We define timely-
throughput as long term average number of packets per time-
slot that are delivered within the delay deadline, i.e.,

η = lim
T→∞

1

T
E

[
T−1∑
t=0

X[t]

]
. (8)

A maximum throughput is achieved by choosing a maximum
U [t] in every time-slot. However, this strategy increases the
average transmit-energy. In this work, we are interested in
maximizing the throughput for a given average transmit-energy.

III. OPTIMAL SCHEDULING PROBLEM

In this Section, we describe the throughput optimum schedul-
ing problem for a given average energy constraint, and provide
an optimum solution.

At time-slot t, we define the state of the system by
S[t] = [X[t], Q[t],W [t], R[t], G̃[t]]. The scheduling decision
is to choose an energy U [t] ∈ U0 when R[t] = 0, and
U [t] ∈ U1 when R[t] ̸= 0 to transmit the HOL packet; U [t] = 0
is chosen to not transmit the HOL packet, or when Q[t] = 0.
The scheduling problem that we consider is to choose U [t]
during each time-slot t such that the throughput is maximum.
If there is no packet delay deadline constraint, one may always
choose the smallest energy for transmission. Similarly, when
there is no energy constraint, one can always choose e1 (largest
energy) for transmission. Thus, there is a tradeoff between the
packet delay deadline constraint d and the average transmission
energy. Let π = (µ0, µ1, µ2, · · · ) be a policy. Under policy π,
define the average reward

Jπ(s0) := lim
T→∞

1

T
Eπ

[
T−1∑
t=0

X[t]

∣∣∣∣S[0] = s0

]
, (9a)

and the average energy

Cπ(s0) := lim
T→∞

1

T
Eπ

[
T−1∑
t=0

U [t]

∣∣∣∣S[0] = s0

]
. (9b)

Let ΠNA denote the class of non-anticipated policies, i.e., any
scheduling policy π = (µ0, µ1, µ2, · · · ) ∈ ΠNA is a sequence of
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functions, where each function µt depends on the state sequence
s0, s1, · · · , st and the action sequence u0, u1, · · · , ut−1. In
this Paper, we obtain an optimal policy π∗ ∈ ΠNA that
maximizes the throughput, while the time average transmit-
energy constraint is satisfied. The energy constrained scheduling
problem is defined as follows.

Problem 1 (Energy Constrained Scheduling):

max
π∈ΠNA

Jπ(s0), (10a)

s.t. Cπ(s0) ⩽ e, (10b)

where e is the average transmit-energy constraint. Let π∗ ∈ ΠNA
be a solution to Problem 1. Since, Problem 1 is a constrained
MDP (CMDP) with a finite state space and a finite action space,
the optimal policy π∗ need not be stationary deterministic [13].

We relax the constraint in (10a), and propose a Lagrangian
relaxed problem. For the Lagrangian with Lagrange multiplier
λ ⩾ 0, the reward of a policy π is defined as,

Jπ
λ (s0) := lim

T→∞

1

T
Eπ

[
T−1∑
t=0

X[t]− λU [t]

∣∣∣∣S[0] = s0

]
, (11)

The unconstrained scheduling problem is thus formulated as,
Problem 2 (Unconstrained Scheduling):

J∗
λ = max

π∈ΠNA
Jπ
λ (s0), (12a)

where, π∗
λ ∈ arg max

π∈ΠNA
Jπ
λ (s0). (12b)

A policy π is called λ-optimal if it achieves J∗
λ . Note that the

one-stage reward of the Unconstrained Scheduling Problem
for state s = [x, q,w, r, g̃] and action u is

F (s, u) = x− λu, (13)

where λ ⩾ 0 is the Lagrangian cost for using energy u.
In Problem 2 (Unconstrained Scheduling), we have an

average reward MDP for a finite state and action spaces,
and hence, a stationary deterministic λ-optimal policy π∗

λ

exists, which can be computed by a value iteration method Let
π∗ = [µ∗, µ∗, · · · ] be the stationary optimal policy. The value
iteration is given by

v0(s) = 0, (14)
vi+1(s) = max

u∈U

[
F (s, u) + E

[
vi (s

′)
∣∣s, u]] , (15)

µi+1(s) = argmax
u∈U

[
F (s, u) + E

[
vi (s

′)
∣∣s, u]] , (16)

µ∗(s) = lim
i→∞

µi(s). (17)

where s′ is the next state of the system when the current state
is s and the current action is u.

IV. OPTIMAL SCHEDULER

In this Section, we provide the optimal scheduling policy for
Problem 1 based on results from [13]. The existence and the
structure of optimal policy for Problem 1 is given as follows.

Theorem 1: For Problem 1, a stationary optimal policy π∗

exists. π∗ randomizes between stationary deterministic policies
π∗
1 and π∗

2 with probabilities θ and 1− θ. The policies π∗
1 and

π∗
2 are λ∗-optimal policies for Problem 2 for some λ = λ∗.

Proof: Let Cλ be the average transmit-energy of λ-optimal
policy. For a given e, define λ∗ as

λ∗ = inf {λ > 0 : Cλ ⩽ e} . (18)

Since there exists a policy f(s) := 0,∀s such that Cf (s0) ⩽ e,
we have from Lemma 3.3 of [13], λ∗ < ∞, and Hypothesis
4.1 of [13] is true. Hence, from Theorem 4.4 of [13], there
exists an optimal stationary randomized policy for Problem 1.

To find the optimal policy, we need λ∗, π∗
1 , π∗

2 and θ. λ∗ is
given by (18). For a given λ∗, consider an increasing sequence
{λn} → λ∗, and a decreasing sequence {λ′

n} → λ∗. Let

lim
λn↑λ∗

Cλn = α1, lim
λ′
n↓λ∗

Cλ′
n

= α2 (19)

where α2 ⩽ e ⩽ α1. It is shown in [13] that {π∗
λn

} converges
to λ∗-optimal policy π∗

1 and {π∗
λ′
n
} converges to λ∗-optimal

policy π∗
2 . Hence, θ is chosen such that Cπ∗

(s0) = e, i.e.,

θ =
e− α2

α1 − α2
. (20)

Since, the optimal policy is computationally intensive, we
propose a sub-optimal algorithm in the next Section.

A. Randomization of Energy Adjacent Decision Rules
(READER)

Define e0 = 0. For any state s = [x, q,w, r, g̃], define the
deterministic policies f0, f1, f2, · · · , fK , as follows.

fi(s) =

{
0, if q = 0,
ei, if q > 0,

Let Cfi(s0) = Ei. Note that E1 > E2 > · · · > EK−1 >
E0 = 0. We propose a policy, Randomization of Energy
Adjacent Decision Rules (READER) that computes action
Ut for a given state st as follows.

Algorithm 1 READER
Input: st, e, E0, E1, E2, · · · , EK−1

Output: Ut

1: if e ⩾ E1 then
2: Choose action Ut = f1(st)
3: else if Ej+1 ⩽ e < Ej for some j = 1, 2, · · · ,K − 2

then
4: Randomize between policies fj+1 and fj
5: Choose action

Ut =

{
fj+1(st), w.p. θ,
fj(st), w.p. 1− θ.

where θ is chosen such that e is achieved.
6: end if
7: return Ut

V. Q-LEARNING POLICY

An optimum policy π∗
λ for a given Lagrangian multiplier λ

can be computed using two time-scale Q-learning [14].
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(a) For fD = 10 Hz, Average Lagrangian reward converges to 0.2842.

 0.25

 0.3

 0.35

 0  100  200  300  400  500  600

Optimum Lagrangian reward = 0.2845

A
ve

ra
ge

 L
ag

ra
ng

ia
n 

re
w

ar
d

Policy updates

Update interval = 50

Update interval = 100

Update interval = 500

(b) For fD = 100 Hz, Average Lagrangian reward converges to 0.2845.

Fig. 2. Comparison of Q-learning with optimum policy for ê1 = 1, ê2 =
0.3219, P = [0.2, 0.3, 0.5], p = 0.4, d = 2, λ = 0.2, and 20 trials.

Algorithm 2 Q-learning
Require: Update interval I , ŝ, û, δt(s, u) = µ

Visitt(s,u)
1: Initialize Q0(s, u) arbitrarily ∀s, u
2: Choose initial state s0 arbitrarily
3: for n = 0, 1, 2, · · · do
4: Update policy µn(s) = argmaxu QnI(s, u),∀s ∈ S
5: for t = nI, nI + 1, · · · , (n+ 1)I − 1 do
6: For st, choose ut from µn(st) by ϵ-greedy policy
7: Take action ut, observe reward rt = F (st, ut), and

observe the next state st+1

8: Set Qt+1(st, ut;λ) = (1−δt)Qt(st, ut;λ) + δt
[
rt+

maxu′ Qk(st+1, u
′;λ)−Qt(ŝ, û;λ)

]
9: end for

10: end for

In the Q-learning algorithm, ŝ, û is an arbitrary state-action
pair, µ > 0 is a constant, and Visitt(s, u) is the number of times
the state-action pair (s, u) is visited in the first t iterations.

We recall that for Lagrangian multiplier λ, the average
transmit-energy of the λ-optimal policy is given by Cλ. Also,
from (18), for a given e, we are interested in obtaining the
optimal Lagrangian multiplier, λ∗ = inf {λ > 0 : Cλ ⩽ e}. We
adapt the subgradient method shown in [14, (43)] to iteratively
find λ∗ as follows.

λk+1 =λk + ϵk
(
Cλk

− e
)
, k = 1, 2, 3, · · · , (21)

where ϵk = 1/k and λ1 ⩾ 0 is chosen arbitrarily.

VI. NUMERICAL RESULTS

We evaluate timely-throughput, defined in (8), as a function
of average transmit-energy constraint e. A 3-state Rayleigh
fading channel is considered, with carrier frequency of 900
MHz, symbol transmission rate of 1 Mb/s, and packet size of
1000 bits. A medium/low mobility with a speed of 3.33 m/s, and
a high mobility with a speed of 33.3 m/s are considered. The
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Fig. 3. Average transmit-energy vs Lagrangian multiplier λ, for ê1 = 1,
ê2 = 0.3219, P = [0.2, 0.3, 0.5], p = 0.4, and d = 2.

corresponding Doppler spreads are fD = 10 Hz and 100 Hz,
respectively. The probability mass function (pmf) of channel
states considered is PG = [0.2, 0.3, 0.5], from which (using
[12, Eqn. (14)]) we compute channel gains g1 = 0.2231 and
g2 = 0.6931. The transition probabilities T(g, g′) are computed
using [12, Eqns. (18)–(20)] for fD = 10 Hz and 100 Hz. A
target SNR of γ = 6.7895 dB or 4.7748 is considered2. From
γ and gis, we get e1 = 21.3978N0

3, and e2 = 6.8885N0. All
energies are normalized with respect to e1, i.e., ê1 = e1/e1 = 1,
and ê2 = e2/e1 = 0.3219. Thus, the energy constraint e is
also normalized with respect to e1. We consider Bernoulli(p)
packet arrivals with p = 0.4.

In Figure 2, for λ = 0.2, we run the Q-learning algorithm
for 20 trials, and plot the trial averaged Lagrangian reward
versus the iteration index. We observe that the trial averaged
Lagrangian reward converges to J∗

0.2 (see (12a)).
In Figure 3, we plot the average transmit-energy Cλ as a

function of λ. λ∗ for each e can be computed from Figure 3.
At any point of discontinuity λ, the optimal policy π∗

λ is a
mixture of policies computed from the Lagrangian multipliers
λ− ν and λ+ ν, where ν > 0 is arbitrarily close to 0.

In Figures 4 and 5, we plot the timely-throughput of various
policies that we propose as a function of the average transmit-
energy, e. In order to quantify the effect of delayed CSIT,
we consider the optimal policy for the case of perfect CSIT
with zero-delay, which we call Bound (motivated by [9], and
is a finite state fading version of [11]). Also, we consider a
Blind randomized policy in which for any state with non-zero
queue, the action is randomized between all energy levels such
that the average energy constraint is met. We plot the timely-
throughput of optimal policy, READER, Bound, and Blind in
Figures 4 and 5, and compare their performance.

From Figures 4 and 5, we see that the optimal policy
performs almost the same as that of Bound for fD = 10 Hz,

2For a BER target of 10−3, and for BPSK, γ is given by Q(
√
2γ) = 10−3.

3Recall that N0 is the AWGN power spectral density.
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Fig. 4. Timely-throughput vs transmit-energy constraint, e for Doppler spread
fD = 10 Hz with ê1 = 1, ê2 = 0.3219, P = [0.2, 0.3, 0.5], p = 0.4.

as the channel has more memory in this case. For each policy,
for a given e, as the delay deadline constraint d increases,
throughput also increases. This is because, for a large d, the
probability of finding a slot with a better channel state is
large. For fD = 100 Hz, the channel changes fast, and hence,
READER (requiring a no CSIT) performs close to the optimal
policy. Also, fD = 100 Hz achieves more throughput than
fD = 10 Hz, due to inherent time-diversity.

VII. CONCLUSIONS

We have investigated a packet scheduling problem with CC-
HARQ in a fading link with delay deadlines, and average
transmit-energy constraint. We have formulated the problem
as a CMDP, and have obtained the optimum policy which is
shown to be a randomization of two stationary deterministic
policies. As the optimal policy is computationally intensive,
we propose the following policies: i) READER, which is a
randomization of adjacent energy policies, and ii) Blind that
randomizes across policies having the same transmit-energy
levels. We compare the throughput performance of the optimal
and the heuristic policies. We show that for fD = 10 Hz, the
channel memory alleviates the delay in CSIT, and for fD = 100
Hz, the performance of READER (which requires no CSIT) is
close to the optimal policy, as for fD = 100 Hz, the channel
behaves more independently.

Our work can be extended for IR-HARQ by considering
a state model that includes the number of coded bits that
are successfully received in all previous transmissions of the
current HOL packet. A packet is successfully delivered, if
the total number of coded bits that are successfully received
crosses a threshold. Thus, our system model can be modified
for IR-HARQ, which can be explored as a future work.
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fD = 100 Hz with ê1 = 1, ê2 = 0.3219, P = [0.2, 0.3, 0.5], p = 0.4.

[2] T. V. K. Chaitanya and E. G. Larsson, “Optimal power allocation for
hybrid ARQ with chase combining in i.i.d. Rayleigh fading channels,”
IEEE Trans. Commun., vol. 61, no. 5, pp. 1835–1846, 2013.

[3] W. Ouyang, A. Eryilmaz, and N. B. Shroff, “Low-complexity optimal
scheduling over time-correlated fading channels with ARQ feedback,”
IEEE Trans. Mobile Comput., vol. 15, no. 9, pp. 2275–2289, Sep. 2016.

[4] J. Liu, W. Chen, and K. B. Letaief, “Delay optimal scheduling for ARQ-
aided power-constrained packet transmission over multi-state fading
channels,” IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7123–
7137, 2017.

[5] J. P. Battistella Nadas, O. Onireti, R. D. Souza, H. Alves, G. Brante, and
M. A. Imran, “Performance analysis of hybrid ARQ for ultra-reliable low
latency communications,” IEEE Sensors J., vol. 19, no. 9, pp. 3521–3531,
2019.

[6] M. Shirvanimoghaddam, H. Khayami, Y. Li, and B. Vucetic, “Dynamic
HARQ with guaranteed delay,” in 2020 IEEE Wireless Communications
and Networking Conference (WCNC), 2020, pp. 1–6.

[7] A. Chelli, E. Zedini, M.-S. Alouini, M. Pätzold, and I. Balasingham,
“Throughput and delay analysis of HARQ with code combining over
double Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 4233–4247, 2018.

[8] B. E. Collins and R. L. Cruz, “Transmission policies for time varying
channels with average delay constraints,” in 1999 Allerton Conf. on
Commun., Control., and Comp., 1999, pp. 709–717.

[9] A. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal transmission scheduling
over a fading channel with energy and deadline constraints,” IEEE Trans.
Wireless Commun., vol. 5, no. 3, pp. 630–641, Mar. 2006.

[10] W. Chen, U. Mitra, and M. J. Neely, “Energy-efficient scheduling with
individual packet delay constraints over a fading channel,” Wireless
Networks, vol. 15, no. 5, pp. 601–618, Jul. 2009.

[11] D. J. Muttath, M. Santhoshkumar, and K. Premkumar, “Energy optimal
packet scheduling with individual packet delay constraints,” in 2018 IEEE
International Conference on Advanced Networks and Telecommunications
Systems (ANTS), 2018, pp. 1–6.

[12] P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, “Finite-
state markov modeling of fading channels - a survey of principles and
applications,” IEEE Signal Processing Magazine, vol. 25, no. 5, pp.
57–80, 2008.

[13] F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov
chains with a constraint,” Journal of Mathematical Analysis and
Applications, vol. 112, no. 1, pp. 236–252, 1985.

[14] D. V. Djonin and V. Krishnamurthy, “Q-learning algorithms for con-
strained Markov decision processes with randomized monotone policies:
Application to MIMO transmission control,” IEEE Trans. Signal Process.,
vol. 55, no. 5, pp. 2170–2181, 2007.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3193176

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indian Institute of Information Technology Design & Manufacturing. Downloaded on July 23,2022 at 23:47:17 UTC from IEEE Xplore.  Restrictions apply. 

https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf

