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Abstract

We investigate sequential event detection problems arising in Wireless Sensor Networks

(WSNs). A number of battery–powered sensor nodes of the same sensing modality are

deployed in a region of interest (ROI). By an event we mean a random time (and, for

spatial events, a random location) after which the random process being observed by the

sensor field experiences a change in its probability law. The sensors make measurements

at periodic time instants, perform some computations, and then communicate the results

of their computations to the fusion centre. The decision making algorithm in the fusion

centre employs a procedure that makes a decision on whether the event has occurred or

not based on the information it has received until the current decision instant. We seek

event detection algorithms in various scenarios, that are optimal in the sense that the

mean detection delay (delay between the event occurrence time and the alarm time) is

minimum under certain detection error constraints.

In the first part of the thesis, we study event detection problems in a small extent

network where the sensing coverage of any sensor includes the ROI. In particular, we are

interested in the following problems: 1) quickest event detection with optimal control of

the number of sensors that make observations (while the others sleep), 2) quickest event

detection on wireless ad hoc networks, and 3) optimal transient change detection. In the

second part of the thesis, we study the problem of quickest detection and isolation of an

event in a large extent sensor network where the sensing coverage of any sensor is only

a small portion of the ROI.

One of the major applications envisioned forWSNs is detecting any abnormal activity

or intrusions in the ROI. An intrusion is typically a rare event, and hence, much of the
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energy of sensors gets drained away in the pre–intrusion period. Hence, keeping all the

sensors in the awake state is wasteful of resources and reduces the lifetime of the WSN.

This motivates us to consider the problem of sleep–wake scheduling of sensors along with

quickest event detection. We formulate the Bayesian quickest event detection problem

with the objective of minimising the expected total cost due to i) the detection delay and

ii) the usage of sensors, subject to the constraint that the probability of false alarm is

upper bounded by α. We obtain optimal event detection procedures, along with optimal

closed loop and open loop control for the sleep–wake scheduling of sensors.

In the classical change detection problem, at each sampling instant, a batch of n

samples (where n is the number of sensors deployed in the ROI) is generated at the sensors

and reaches the fusion centre instantaneously. However, in practice, the communication

between the sensors and the fusion centre is facilitated by a wireless ad hoc network

based on a random access mechanism such as in IEEE 802.11 or IEEE 802.15.4. Because

of the medium access control (MAC) protocol of the wireless network employed, different

samples of the same batch reach the fusion centre after random delays. The problem is to

detect the occurrence of an event as early as possible subject to a false alarm constraint.

In this more realistic situation, we consider a design in which the fusion centre

comprises a sequencer followed by a decision maker. In earlier work from our research

group, a Network Oblivious Decision Making (NODM) was considered. In NODM, the

decision maker in the fusion centre is presented with complete batches of observations as if

the network was not present and makes a decision only at instants at which these batches

are presented. In this thesis, we consider the design in which the decision maker makes

a decision at all time instants based on the samples of all the complete batches received

thus far, and the samples, if any, that it has received from the next (partial) batch.

We show that for optimal decision making the network–state is required by the decision

maker. Hence, we call this setting Network Aware Decision Making (NADM). Also,

we obtain a mean delay optimal NADM procedure, and show that it is a network–state

dependent threshold rule on the a posteriori probability of change.

In the classical change detection problem, the change is persistent, i.e., after the
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change–point, the state of nature remains in the in–change state for ever. However,

in applications like intrusion detection, the event which causes the change disappears

after a finite time, and the system goes to an out–of–change state. The distribution of

observations in the out–of–change state is the same as that in the pre–change state. We

call this short–lived change a transient change. We are interested in detecting whether

a change has occurred, even after the change has disappeared at the time of detection.

We model the transient change and formulate the problem of quickest transient change

detection under the constraint that the probability of false alarm is bounded by α. We

also formulate a change detection problem which maximises the probability of detection

(i.e., probability of stopping in the in–change state) subject to the probability of false

alarm being bounded by α. We obtain optimal detection rules and show that they are

threshold rules on the a posteriori probability of pre–change, where the threshold depends

on the a posteriori probabilities of pre–change, in–change, and out–of–change states.

Finally, we consider the problem of detecting an event in a large extent WSN, where

the event influences the observations of sensors only in the vicinity of where it occurs.

Thus, in addition to the problem of event detection, we are faced with the problem of

locating the event, also called the isolation problem. Since the distance of the sensor from

the event affects the mean signal level that the sensor node senses, we consider a realistic

signal propagation model in which the signal strength decays with distance. Thus, the

post–change mean of the distribution of observations across sensors is different, and is

unknown as the location of the event is unknown, making the problem highly challenging.

Also, for a large extent WSN, a distributed solution is desirable. Thus, we are interested

in obtaining distributed detection/isolation procedures which are detection delay optimal

subject to false alarm and false isolation constraints.

For this problem, we propose the following local decision rules, MAX, HALL, and

ALL, which are based on the CUSUM statistic, at each of the sensor nodes. We identify

corroborating sets of sensor nodes for event location, and propose a global rule for

detection/isolation based on the local decisions of sensors in the corroborating sets.

Also, we show the minimax detection delay optimality of the procedures HALL and ALL.
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Chapter 1

Introduction

Reasoning and developing systematic techniques for making inference has engaged many

a great mind since the age of ancient Greek philosophy (sixth century BC) and Indian

philosophy (Nyaya sutras of second century AD). The ancient schools of philosophy

make inference by syllogism or logical arguments. Since the advent of probability theory,

modelling uncertainty by probability models, building such models from statistical data,

and deriving inference procedures from such models has become a very important

methodology for a large community of scientists and practising engineers.

The quest for environment and habitat monitoring, industrial automation, intrusion

detection, identifying locations of survivors in disasters, etc., has given rise to the field

of wireless sensor networks (WSNs) in which sensor devices observe the environment

and a wireless ad hoc network communicates the observations from the sensor devices to

a decision maker that makes inferences. Dramatic advances in low power microelectronics

have made the requisite sensor technology and wireless communication technology feasible.

Major advances are required, however, in distributed algorithms for signal processing and

networking to realise the potential of WSN technology. In this thesis, we are interested

in exploring inference problems that arise in sensor networks.

A wireless sensor network (WSN) is formed by a number of tiny, untethered battery–

powered devices (popularly called “motes” anticipating the possibility that one day these

devices may be as small and unobtrusive as a speck of dust [Mote]) that can sense,

1
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Fusion
Centre

Figure 1.1: An ad hoc wireless sensor network with a fusion centre is shown. The small
circles are the sensor nodes (“motes”), and the lines between them indicate wireless links
obtained after a self-organization procedure.

compute, and communicate. Figure 1.1 shows a sensor network in which a number of

sensor nodes are deployed in the region of interest (ROI) shown by the larger circle. The

sensor nodes self–organize to form a network. The observations from the sensor nodes

are processed (for e.g., quantized), and the processed data is communicated to the fusion

centre through the network. The fusion centre acts as a controller and takes necessary

actions based on the application for which it is designed.

Event detection is an important task in many sensor network applications. In general,

an event is associated with a change in the distribution of a related quantity that can

be sensed. For example, the event of a fire break-out causes a change in the distribution

of temperature in that area, and hence, can be detected with the help of temperature

sensors. Each sensor node deployed in the ROI, senses and sends some function of its

observations (e.g., quantized samples) to the fusion centre at a particular sampling rate.

The fusion centre, by appropriately processing the sequence of values it receives, makes

a decision regarding the state of nature, i.e., it decides whether an event has occurred or

not.

In this thesis, we are interested in obtaining quickest event detection procedures

under various scenarios that are detection delay (the delay between the event occurring

and the detection decision at the fusion centre) optimal with a constraint on false
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alarms. We review the literature on change detection in Section 1.1 and identify the

shortcomings which we address in this thesis. The main contributions of this thesis is

listed in Section 1.2. The organisation of the thesis is given in Section 1.3.

1.1 Literature Survey on Change Detection

Bayesian Change Detection: The classical problem of quickest change detection was

formulated and solved in the Bayesian framework by Shiryaev in [Shiryaev, 1963]. In

a change detection problem, a stochastic process (describing some aspect of a system)

changes from “good” to “bad” state at some unknown time. A decision maker observes

the system and needs to infer when the change has occurred based on these observations.

Shiryaev assumed the following: i) the observation process is conditionally i.i.d. given

the state of nature (i.e., “good” or “bad”) and ii) the distribution of the change time

is geometric with known mean, and formulated the quickest change detection problem

as an optimal stopping problem under the constraint that the probability of false alarm

constraint does not exceed α, a parameter of interest. Shiryaev showed that the optimal

stopping rule is a threshold rule on the a posteriori probability of change where the

threshold depends on α.

The conditional i.i.d. assumption of the classical problem is relaxed by Yakir in

[Yakir, 1994]. Yakir generalised the classical change detection problem to the case when

the pre–change and the post–change processes of observations are finite state Markov

chains. Yakir showed that the optimal stopping time is a threshold rule on a posteriori

probability of change, and the threshold at time k also depends on the observation at

time k.

The geometric distribution assumption on the change time of the classical change

detection problem (posed by Shiryaev) was relaxed by Tartakovsky and Veeravalli in

[Tartakovsky and Veeravalli, 2005]. Tartakovsky and Veeravalli studied the classical

change change detection problem in the Bayesian setting, when the distribution of the

change–point is not geometric. In the asymptotic regime, as α → 0, they showed that the
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optimal detection rule is again a simple threshold rule on the a posteriori probability of

change. They also analysed the optimal mean detection delay in the asymptotic setting

(i.e., as α → 0).

Non–Bayesian Change Detection: The earliest work on non–Bayesian change

detection was by Page in [Page, 1954]. Page proposed CUSUM (CUmulative SUM), a

sequential change detection procedure that stops and declares a change at time k, when

the CUSUM statistic (a statistic that is recursively computed from the observations)

exceeds a certain threshold. The threshold is chosen such that the time–to–false alarm

of the CUSUM procedure exceeds γ, a performance objective. It is to be noted that the

CUSUM was proposed by Page as a heuristic.

Lorden [Lorden, 1971] showed that Page’s CUSUM procedure is asymptotically (as

γ → ∞) worst–case detection delay optimal, where the worst case is taken over all

possible change points and over all possible set of observations before the change point.

The optimality of CUSUM for any time–to–false alarm constraint γ > 0 is shown (in the

non–Bayesian framework) by Moustakides in [Moustakides, 1986] and (in the Bayesian

framework) by Ritov in [Ritov, 1990].

Shiryaev ([Shiryaev, 1978]), Roberts ([Roberts, 1966], and Pollak ([Pollak, 1985])

independently proposed a non–Bayesian change detection procedure called the Shiryaev–

Roberts–Pollak (SRP) test which is obtained as a limit of Bayes rules. Also, it is shown

in [Shiryaev, 1978], and [Pollak, 1985] that the SRP procedure is asymptotically average

delay optimal as the probability of false alarm goes to zero.

It is to be noted that all the non–Bayesian procedures considered above assume the

case of i.i.d. samples before and after the change–point. This condition is relaxed by

Lai in [Lai, 1998]. Lai considered stationary and ergodic processes for pre–change and

post–change observations, and obtained non–Bayesian minimax delay optimal change

detection procedures which are again simple threshold rules.

In [Nikiforov, 1995], Nikiforov proposed a multihypothesis change detection problem,

also called a change detection/isolation problem. Nikiforov considered multiple post–change

states and that the system after change, enters into one of the post–change states.
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Nikiforov proposed a minimax delay optimal solution for the problem under false alarm

and false isolation constraints. It is to be noted that the solution proposed by Nikiforov is

centralised and the decision statistic can not be computed in a recursive manner, making

the procedure computationally expensive.

Decentralised Detection: The problem of decentralised detection was introduced

by Tenny and Sandell in [Tenny and Sandell, 1981]. Tenney and Sandell, considered a

binary hypothesis testing problem and proposed local decision rules which are threshold

rules on likelihood–ratios. In [Aldosari and Moura, 2004], Aldosari and Moura studied

the problem of decentralised binary hypothesis testing, where the sensors quantize the

observations and the fusion centre makes a binary decision between the two hypotheses.

In [Veeravalli, 2001], Veeravalli considered the problem of decentralised sequential

change detection and provided an optimal quantization rule for the sensors and stopping

rule for the fusion centre, in the context of conditionally independent sensor observations

and a quasi–classical information structure.

In [Tartakovsky and Veeravalli, 2003], Tartakovsky and Veeravalli proposed the

following decentralised detection procedures: i) MAX and ii) ALL. Here, each sensor node

runs a local change detection procedure (the Shiryaev–Roberts procedure is considered

here), which is driven by its own observations only. MAX rule raises an alarm at the

time instant when the last local change detection procedure stops, and ALL rule raises

an alarm at the time instant when the decision statistic at all the local change detection

procedures crosses a threshold. The authors showed that the procedures MAX and ALL

are asymptotically optimal as the probability of false alarm constraint α → 0.

In [Mei, 2005], Mei studied the ALL procedure with CUSUM at the sensor nodes for

local change detection. He showed that when the time–to–false alarm goes to infinity, the

supremum detection delay (in the sense of Lorden’s metric [Lorden, 1971]) of ALL is the

same as that of centralised CUSUM.

In [Tartakovsky and Veeravalli, 2008], Tartakovsky and Veeravalli studied the MAX

procedure with CUSUM at the sensor nodes for local change detection. They showed

that when the time–to–false alarm goes to infinity, the supremum detection delay of MAX
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procedure grows as c

mini KL(f
(i)
1 ,f

(i)
0 )

, where c is the CUSUM threshold, KL(g, h) is the

Kullback–Leibler divergence between the probability density functions (pdfs) g and h,

and f
(i)
0 , f

(i)
1 s are the pre–change and the post–change pdfs of the observation at sensor

node i.

For a large network setting, Niu and Varshney [Niu and Varshney, 2005] studied a

simple hypothesis testing problem and proposed a counting rule based on the number

of alarms. They showed that, for a sufficiently large number of sensors, the detection

performance of the counting rule is close to that of the centralised optimal rule.

1.1.1 Limitations of the Classical Change Detection Problem

We note that the classical change detection problem does not address the following issues.

1. Sensor nodes are energy–constrained. Hence, it is important to consider the

situation in which the sensor nodes undergo a sleep–wake cycling, and thus only

the sensor nodes that are in the awake state send their observations to the fusion

centre. This problem of optimal stopping with sleep–wake cycling of sensors needs

to be studied.

2. In practice, the sensors and the fusion centre are connected by a wireless ad hoc

network based on a random access mechanism such as in IEEE 802.11 or IEEE

802.15.4. Hence, the assumption (of the classical change detection problem) that

at a sampling instant, the observations from all the sensors reaches the fusion

centre instantaneously does not hold true. Hence, the problem of quickest change

detection over wireless ad hoc networks remains unanswered in the literature.

3. The classical change detection problem assumes that once the change occurs, it

remains there for ever. In some applications, such as structural health monitoring,

the model of a permanent change (also called persistent change) might be a reasonable

one, but this assumption is not true for many applications like intrusion detection.

Thus, the problem of transient change detection is left open in the literature.
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4. In the case of a large system, it is not always true that the change affects the

statistics of the observations of all the nodes. Hence, the post–change distribution

of different nodes can be different. Also, in applications like intrusion detection, the

location of the event has a bearing on the mean of the post–change distribution. To

the best of our knowledge, detection problems of this kind have not been studied

in the literature.

In this thesis, we formulate and solve four change detection problems in each of which

one of the limitations mentioned above has been removed.

1.2 Main Contributions of the Thesis

• Sleep–wake scheduling of sensors for quickest event detection in small

extent networks:

1. We provide a model for the sleep –wake scheduling of sensors by taking

into account the cost per observation (which is the sensing + computation+

communication cost) per sensor in the awake state and formulate the joint

sleep –wake scheduling and quickest event detection problem subject to a false

alarm constraint, in the Bayesian framework, as an optimal control problem.

We show that the problem can be modelled as a partially observable Markov

decision process (POMDP).

2. We obtain an average delay optimum stopping rule for event detection and

show that the stopping rule is a threshold rule on the a posteriori probability

of change.

3. Also, at each time slot k, we obtain the optimal strategy for choosing the

optimum number of sensors to be in the awake state in time slot k+1 based

on the sensor observations until time k, for each of the control strategies

described as follows:
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(i) control of Mk+1, the number of sensors to be in the awake state in time

slot k + 1,

(ii) control of qk+1, the probability of a sensor to be in the awake state in

slot k + 1, and

(iii) constant probability q of a sensor in the awake state in any time slot.

• Event Detection on a small extent ad hoc wireless network

1. We formulate the problem of quickest event detection on ad hoc wireless

network.

2. We propose a class of decision strategies called NADM, in which the decision

maker makes a decision based on the samples as and when it comes, but in

time–sequence order.

3. We obtain an optimal change detection procedure the mean detection delay

of which is minimal in the class of NADM policies for which PFA 6 α.

4. We study the tradeoff between the sampling rate, r and the mean detection

delay. We also study the detection delay performance as a function of the

number of nodes n, for a given number of observations per unit slot, i.e., for

a fixed nr.

• Transient change detection

1. We provide a model for the transient change and formulate the optimal

transient change detection problem.

2. We obtain the following procedures for detecting a transient change:

(i) MinD (Minimum Detection Delay) which minimises the mean detection

delay when the probability of false alarm is limited to α

(ii) A–MinD (Asymptotic – Minimum Detection Delay) which is obtained as

a limit of of the MinD procedure when the mean time until the occurrence

of change goes to ∞ (i.e., for a rare event)
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(iii) MaxP (Maximum Probability of change) which maximises the probability

of stopping when the change is present (which we call the probability of

detection) when the probability of false alarm is limited to α.

• Event detection in large extent wireless sensor networks

1. We formulate the event detection/isolation problem in a large extent network

as a worst case detection delay minimisation problem subject to a mean time

to false alarm and mean time to false isolation constraints. Because of the

large extent network, the postchange distribution is unknown, and the latter

is a novel aspect of our problem formulation.

2. We propose distributed detection/isolation procedures MAX, ALL, and HALL

(Hysteresis modified ALL) for large extent wireless sensor networks. The

procedures MAX and ALL are extensions of the decentralised procedures MAX

[Tartakovsky and Veeravalli, 2003] and ALL [Mei, 2005], which were developed

for small extent networks. The distributed procedures MAX, ALL, and HALL

are computationally less complex and more energy–efficient compared to the

centralised procedure given by Nikiforov [Nikiforov, 1995] (which can be applied

only to the Boolean sensing model).

3. We analyse the supremum worst case detection delay (SADD) of MAX, ALL,

and HALL when the mean time to false alarm (TFA) and the mean time to false

isolation (TFI) are at least as large as a certain threshold γ. For the case of

the Boolean sensing model, we compare the detection delay performance of the

these distributed procedures with that of Nikiforov’s procedure [Nikiforov, 1995]

(a centralised asymptotically optimal procedure) and show that the distributed

procedures ALL and HALL are asymptotically order optimal.
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1.3 Organisation of the Thesis

In Chapter 2, we introduce the basic change detection problem and define various metrics

of interest like the detection delay, probability of detection, etc. We also discuss the

various centralised and the decentralised detection procedures available in the literature

in this chapter.

In Chapter 3, we study the problem of event detection with minimum number of

sensors in the awake state. We formulate the problem and cast it in the framework of

Markov Decision Process (MDP) and obtain optimal closed loop and open loop control

policies for sleep–wake scheduling of sensor nodes along with the optimum detection rule.

In Chapter 4, we study the problem of detection on ad hoc wireless sensor networks

where the reception times of the packets at the fusion centre are not in the same

time–order as the sampling times. We provide a decision strategy called Network Aware

Decision Making (NADM) and obtain the mean delay optimal NADM procedure.

In Chapter 5, we are interested in detecting a transient–change. We propose a

Markov model for transient change, and formulate the optimal transient change detection

problem as a Markov Decision Process and obtain various detection procedures for

optimality criterion like detection delay and probability of detection.

In Chapter 6, we consider a large extent network where the statistics of the observations

are affected by the event only in the vicinity of where it occurs. We formulate the problem

in the framework of Nikiforov [Nikiforov, 1995], and propose distributed detection/isolation

procedures and discuss their minimax optimality.

In Chapter 7, we conclude the thesis by outlining the list of contributions and the

future directions of research in this field.

The proofs of Theorems/Lemmas/Propositions in each chapter are provided in the

Appendix of the chapter.
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Chapter 2

The Basic Change Detection

Problem

In this chapter, we discuss the basic change detection problem and the performance

metrics involved. In Section 2.1, we describe the basic change detection problem. The

performance metrics that are typically used in the change detection problem are defined

in Section 2.2. In Section 2.3, we describe the Bayesian change detection problem. In

Section 2.4, we describe the non–Bayesian change detection problem and discuss the

centralised procedure CUSUM, and the decentralised procedures, MAX and ALL.

2.1 Classical Change Detection Problem

Consider a discrete time system with time instants k ∈ Z+. At each time instant

k > 1, an observation is made by each of n nodes. Let the vector random variable

Xk = [X
(1)
k , X

(2)
k , · · · , X(n)

k ] represent the observations made by the nodes at time instant

k. A change occurs at a random time T ∈ Z+. Before the change–point (i.e., for k < T ),

the random variables X
(i)
k are i.i.d. across nodes and time, and the distribution of X

(i)
k

is given by F
(i)
0 . After the change–point (i.e., for k > T ), the random variables X

(i)
k

are i.i.d. across nodes and time, and the distribution of X
(i)
k is given by F

(i)
1 . Let the

corresponding probability density functions (pdfs) be f
(i)
0 and f

(i)
1 respectively (where

13
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f
(i)
1 6= f

(i)
0 , ∀i). The problem is to detect the change as early as possible subject to a

constraint on the false alarm. Let τ be the time instant at which the decision maker stops

and declares a change (thereby asserting that the change has occurred at or before τ).

Since the inference is based on “noisy” observations, it is entirely possible that τ < T ,

which would be a false alarm. On the other hand, τ > T would result in detection delay.

2.2 Definitions

Let τ be a stopping time with respect to the observation sequence, X1, X2, · · · , i.e., for
any k ∈ Z+, the occurrence of the event {τ 6 k} can be determined by X1,X2, · · · ,Xk.

We use the terms stopping time and change detection procedure interchangeably as the

stopping time defines a sequential change detection procedure.

Definition 2.1 Probability of False Alarm (PFA) of a procedure τ is defined as the

probability of stopping before the change–point T , i.e.,

PFA(τ) := P {τ < T} .

In many detection problems, a false alarm incurs a cost, and hence, a low PFA is desirable.

Definition 2.2 Mean Detection Delay (ADD) of a procedure τ is defined as the

expected number of samples between the change–point, T and the stopping time, τ i.e.,

ADD(τ) := E
[
(τ − T )+

]
.

We note that the notation (x)+ := max{x, 0}. In literature on change detection, there

is also a notion of mean detection delay defined as E[τ − T | τ > T ].

Consider two stopping times τ1, τ2 such that τ1 6 τ2 almost surely. Then, it is easy

to see from the definitions of mean detection delay and probability of false alarm that

ADD(τ1) 6 ADD(τ2) and PFA(τ1) > PFA(τ2). Thus, a lower mean detection delay comes

with a price of higher probability of false alarm.
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Definition 2.3 Time to False Alarm (TFA) of a procedure τ is defined as the expected

number of samples taken by the procedure to stop in the pre–change state.

TFA(τ) := E∞ [τ ] .

The notation E∞[·] means that the change has not occurred until time τ , and the

expectation is taken with respect to the product distribution of F
(i)
0 s.

Definition 2.4 Supremum Average Detection Delay (SADD) of a procedure τ is

defined as the worst case expected number of samples between the change–point and the

stopping time, where the worst case is over all possible values of change–point t and over

all possible set of observations before the change–point, i.e.,

SADD(τ) := sup
t>1

ess sup Et

[
(τ − t + 1)+ | X[1:t−1]

]
.

The notation Et[·] means that the expectation is taken with respect to the distribution

when the change–point is t, conditioned on the observations until t−1. The distribution

of X[1:k], when the change–point is t, can be described by the following pdf,

f(x[1:k]; t) :=





∏k
k′=1

∏n
i=1 f

(i)
0 (x

(i)
k′ ), if k < t[∏t−1

k′=1

∏n
i=1 f

(i)
0 (x

(i)
k′ )
]
·
[∏k

k′′=t

∏n
i=1 f

(i)
1 (x

(i)
k′′)
]
, if k > t.

Definition 2.5 Bayesian Detection Procedure: A detection procedure is said to be

Bayesian if the procedure uses the distribution of the change–point T . The distribution

of the change–point is also called the prior.

An example of a Bayesian change detection procedure is Shiryaev’s procedure, [Shiryaev, 1978].

Definition 2.6 Non–Bayesian Detection Procedure: A detection procedure is said

to be non–Bayesian if no prior distribution of the change–point T is provided during the

design of the procedure.
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In non–Bayesian change detection problems, the change–point T is typically considered

as an unknown constant. An example of a non–Bayesian change detection procedure is

Page’s CUSUM procedure, [Page, 1954].

Definition 2.7 Centralised Detection Procedure: A detection procedure is said to

be centralised if at each time instant, the observations from the nodes are passed on

to a centralised decision maker which makes a decision about whether the change has

occurred or not.

Examples of centralised change detection procedures are Shiryaev’s procedure and the

CUSUM procedure.

Definition 2.8 Decentralised Detection Procedure: A detection procedure is said

to be decentralised if at each time instant, each node makes a local decision based on its

observations only, and the local decisions from the nodes are passed on to a decision

maker which makes a global decision about whether the change has occurred or not.

Note that the local decision could be a quantisation of the observations into one of

several levels or a local change detection based on CUSUM. Examples of decentralised

change detection procedures are MAX procedure ([Tartakovsky and Veeravalli, 2003],

[Tartakovsky and Veeravalli, 2008]) and ALL procedure ([Tartakovsky and Veeravalli, 2003],

[Mei, 2005], [Tartakovsky and Veeravalli, 2008]).

2.3 The Bayesian Change Detection Problem

In Section 2.1, we have discussed the problem of change detection where we have not

made any comment about the change–time T . In the Bayesian version of the change

detection problem, the distribution of the change–point (called as the prior) is known.

In the classical Bayesian change detection problem ([Shiryaev, 1978]), the distribution



2.4. Non–Bayesian Change Detection Problem 17

of T is assumed to be geometric and is given by

P {T = k} =





ρ, if k 6 0

(1− ρ)(1− p)k−1p, if k > 0,

where 0 < p 6 1 and 0 6 ρ 6 1 represents the probability that the event happened even

before the observations are made (k 6 0).

The Bayesian change detection problem is to detect the change as early as possible

subject to the constraint that the probability of false alarm is bounded by α, a parameter

of interest. Let τ be the time instant at which the change is detected. Note that τ is a

stopping time with respect to the observation sequence X1,X2, · · · . Then, the optimal

change detection problem formulated by Shiryaev is given by

τShiryaev ∈ arg min
τ∈∆(α)

E
[
(τ − T )+

]

where ∆(α) := {stopping time τ : P {τ < T} 6 α}. Shiryaev showed that a sufficient

statistic for this problem at time k is given by the a posteriori probability of change,

Πk = P
{
T 6 k | X[1:k]

}
. Shiryaev also obtained the optimal Bayesian change detection

rule τShiryaev which is given by the threshold rule,

τShiryaev = inf {k : Πk > Γ} ,

where the threshold Γ is chosen such that the false alarm criterion is met with equality,

i.e., P
{
τShiryaev < T

}
= α.

2.4 Non–Bayesian Change Detection Problem

2.4.1 CUmulative SUM (CUSUM)

In the non–Bayesian problem, the change point T is assumed to be an unknown constant

or a random variable whose distribution is unknown. In the non–Bayesian centralised
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detection procedure, at each time instant k, the decision maker receives the observation

vector Xk = [X
(1)
k , X

(2)
k , · · · , X(n)

k ], and computes the log–likelihood ratio (LLR) Zk

between the post–change and the pre–change distributions as follows.

Zk :=

n∑

i=1

Z
(i)
k ,

where Z
(i)
k := ln

(
f
(i)
1 (X

(i)
k )

f
(i)
0 (X

(i)
k )

)
.

The decision maker then computes the CUSUM statistic Ck as

Ck := (Ck−1 + Zk)
+

where C0 := 0. Recall that the notation (x)+ := max{x, 0}. The stopping rule CUSUM

is given by Page ([Page, 1954]) as follows.

τCUSUM = inf {k : Ck > c} ,

where the threshold c is chosen such that a time–to–false alarm, TFA constraint is met, i.e.,

E∞

[
τCUSUM

]
= γ. The CUSUM statistic also has a maximum–likelihood interpretation

([Basseville and Nikiforov, 1993]). The optimality of CUSUM is shown by Lorden in

[Lorden, 1971]. Lorden showed that CUSUM is asymptotically minimax detection delay

optimal, i.e., as the TFA constraint γ → ∞,

τCUSUM ∈ arg inf
{τ :TFA>γ}

SADD(τ).

Also, Lorden showed that the asymptotic SADD of CUSUM is

SADD(τCUSUM) ∼ ln γ
n∑

i=1

KL(f
(i)
1 , f

(i)
0 )

, as γ → ∞,

where KL(f, g) is the Kullback–Leibler divergence between the pdfs f and g.
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In the decentralised approach, each sensor makes a local decision based only on its

own observations, and the local decisions are communicated to the global decision maker.

The global decision maker makes a decision on the occurrence of change. In the rest of

this section, we discuss decentralised non–Bayesian change detection procedures where

the local decision rules are based on the CUSUM statistics. Let Z
(i)
k be the LLR of

the observation X
(i)
k between the pdfs f

(i)
1 and f

(i)
0 . Node i then computes the CUSUM

statistic C
(i)
k based on its own observations only, i.e.,

C
(i)
k :=

(
C

(i)
k−1 + Z

(i)
k

)+
,

where C
(i)
0 := 0. Based on the CUSUM statistic C

(i)
k , the node i makes a local decision

D
(i)
k ∈ {0, 1}. A number of possibilities arise for the choice of local decision rules. In

this chapter, we consider two decentralised procedures i) MAX and ii) ALL.

2.4.2 MAX Procedure

In [Tartakovsky and Veeravalli, 2003], Tartakovsky and Veeravalli proposed MAX rule,

a decentralised procedure for change detection. In this procedure, each node i employs

CUSUM for change detection. The local CUSUM in sensor node i is driven only by the

observations of node i. Let τ (i),CUSUM be the time instant at which the CUSUM procedure

in node i stops. The global decision rule is given by the following

τMAX := max
{
τ (1),CUSUM, τ (2),CUSUM, · · · , τ (n),CUSUM

}
.

In [Tartakovsky and Veeravalli, 2008], Tartakovsky and Veeravalli also studied the asymptotic

worst case detection delay of MAX procedure and is given by

SADD
(
τMAX

)
∼ ln γ

min
16i6n

KL(f
(i)
0 , f

(i)
1 )

, as γ → ∞.

In the special case of f
(i)
0 = f0 and f

(i)
1 = f1 for all 1 6 i 6 n, it is easy to see from

SADD(τCUSUM) and SADD(τMAX) that as γ → ∞, the worst case detection delay of τMAX
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is n times that of the centralised CUSUM procedure.

2.4.3 ALL Procedure

Tartakovsky and Veeravalli ([Tartakovsky and Veeravalli, 2003]), Mei ([Mei, 2005]), and

Tartakovsky and Veeravalli ([Tartakovsky and Veeravalli, 2008]) proposed ALL rule, a

decentralised change detection procedure based on the CUSUM statistic of each sensor

node. In this procedure, the local decision D
(i)
k at each sensor node i is obtained using

the statistic C
(i)
k as follows.

D
(i)
k :=





0, if C
(i)
k < c

1, otherwise,

where c is the CUSUM threshold used at the nodes. In this procedure, the CUSUM at

the sensor nodes do not stop even after crossing the threshold. The global decision rule

τALL is given by

τALL := inf
{
k : D

(i)
k = 1, ∀ i = 1, 2, · · · , n

}

= inf
{
k : C

(i)
k > c, ∀ i = 1, 2, · · · , n

}
.

Choosing the local CUSUM threshold c = ln γ achieves the mean time–to–false alarm

larger than γ. For this choice of c, the asymptotic worst case detection delay of ALL

procedure is given by

SADD
(
τALL

)
∼ ln γ

n∑
i=1

KL(f
(i)
0 , f

(i)
1 )

, as γ → ∞.

From SADD
(
τCUSUM

)
and SADD

(
τALL

)
, it is easy to see that asymptotically the worst

case detection delay performance of ALL, a decentralised procedure, is the same as that

of the centralised procedure CUSUM.



Chapter 3

Quickest Event Detection with

Sleep–Wake Scheduling

3.1 Introduction

In the previous chapter, we have discussed the classical change detection problem in

which the decision maker, after having observed the kth sample, has to make a decision

to stop at the kth sample instant, or to continue observing the k + 1th sample. There,

the decision maker is concerned only about minimising the detection delay. However,

in many applications, there is a cost associated with generating an observation and

communicating it to the decision maker.

When a WSN is used for physical intrusion detection applications (e.g., detection of

a human intruder into a secure region), much of the energy of the sensor nodes gets

drained away in the pre–intrusion period. As sensor nodes are energy–limited devices,

this reduces the utility of the sensor network. Thus, in addition to the problem of

quickest event detection, we are also faced with the problem of increasing the lifetime of

sensor nodes. We address this problem in this chapter, by means of optimal sleep–wake

scheduling of sensor nodes.

A sensor node can be in one of two states, the sleep state or the awake state. A

sensor node in the sleep state conserves energy by switching to a low–power state. In

21
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the awake state, a sensor node can make measurements, perform some computations,

and then communicate information to the fusion centre. For enhancing the utility and

the lifetime of the network, it is essential to have optimal sleep–wake scheduling for the

sensor nodes.

In this chapter, we are interested in the quickest detection of an event with a minimal

number of sensors in the awake state. A common approach to this problem is by having

a fixed deterministic duty cycle for the sleep–wake activity. However, the duty cycle

approach does not make use of the prior information about the event, nor the observations

made by the sensors, and hence is not optimal. To the best of our knowledge, our work is

the first to look at the problem of joint design of optimal change detection and sleep–wake

scheduling.

3.1.1 Summary of Contributions

We summarise the main contributions of this chapter below.

1. We provide a model for the sleep –wake scheduling of sensors by taking into account

the cost per observation (which is the sensing + computation+ communication cost)

per sensor in the awake state and formulate the joint sleep –wake scheduling and

quickest event detection problem subject to a false alarm constraint, in the Bayesian

framework, as an optimal control problem. We show that the problem can be

modelled as a partially observable Markov decision process (POMDP).

2. We obtain an average delay optimum stopping rule for event detection and show

that the stopping rule is a threshold rule on the a posteriori probability of change.

3. Also, at each time slot k, we obtain the optimal strategy for choosing the optimum

number of sensors to be in the awake state in time slot k + 1 based on the sensor

observations until time k, for each of the control strategies described as follows:

(i) control of Mk+1, the number of sensors to be in the awake state in time slot

k + 1,
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(ii) control of qk+1, the probability of a sensor to be in the awake state in slot

k + 1, and

(iii) constant probability q of a sensor in the awake state in any time slot.

3.1.2 Discussion of the Related Literature

In this section, we discuss the most relevant literature on energy–efficient detection.

Censoring was proposed by Rago et al. in [Rago et al., 1996] as a means to achieve

energy–efficiency. Binary hypothesis testing with energy constraints was formulated by

Appadwedula et al. in [Appadwedula et al., 2005]. These schemes find the “information

content” in any observation, and uninformative observations are not sent to the fusion

centre. Thus, censoring saves only the communication cost of an observation. In our

work, by making a sensor go to the sleep state, we save the sensing + computation+

communication cost of making an observation.

In related work [Wu et al., 2007], Wu et al. proposed a low duty cycle strategy for

sleep –wake scheduling for sensor networks employed for data monitoring (data collection)

applications. In the case of sequential event detection, duty cycle strategies are not

optimal, and it would be beneficial to adaptively turn the sensor nodes to the sleep

or awake state based on the prior information, and the observations made during the

decision process, which is the focus of this chapter.

In [Zacharias and Sundaresan, 2007], Zacharias and Sundaresan studied the problem

of event detection in a WSN with physical layer fusion and power control at the sensors

for energy–efficiency. Their Markov decision process (MDP) framework is similar to ours.

However, in [Zacharias and Sundaresan, 2007], all the sensor nodes are in the awake state

at all time. In our work, we seek an optimal state dependent policy for determining how

many sensors to be kept in the awake state, while achieving the inference objectives

(detection delay and false alarm).
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3.1.3 Outline of the Chapter

The rest of the chapter is organised as follows. In Section 3.2, we formulate the sleep

–wake scheduling problem for quickest event detection. We describe various costs associated

with the event detection problem. Also, we outline various control strategies for sleep

–wake scheduling of sensor nodes. In Section 3.3, we discuss the optimal sleep –wake

scheduling problem that minimises the detection delay when there is a feedback from

the decision maker (in this case, the fusion centre) to the sensors. In particular, the

feedback could be the number of sensors to be in the awake state or the probability of

a sensor to be in the awake state in the next time slot. We show that the a posteriori

probability of change is sufficient for stopping and for controlling the number of sensors

to be in the awake state. In Section 3.4, we discuss an optimal open loop sleep –wake

scheduler that minimises the detection delay where there is no feedback from the fusion

centre and the sensor nodes. We obtain the optimal probability with which a sensor

node is in the awake state at any time slot. In Section 3.5, we provide numerical results

for the sleep –wake scheduling algorithms we obtain. Section 3.6 summarises the results

in this chapter.

3.2 Problem Formulation

In this section, we describe the problem of quickest event detection with a cost for taking

observations and set up the model. We consider a WSN comprising n unimodal sensors

(i.e., all the sensors have the same sensing modality, e.g., acoustic, vibration, passive

infrared (PIR), or magnetic) deployed in a regionA for an intrusion detection application.

We consider a small extent network, i.e., the regionA is covered by the sensing coverage of

each of the sensors. An event (for example, a human “intruder” entering a secure space)

happens at a random time. The problem is to detect the event as early as possible with

an optimal sleep –wake scheduling of sensors subject to a false alarm constraint.

We consider a discrete time system and the basic unit of time is one slot. The slots

are indexed by non–negative integers. A time slot is assumed to be of unit length, and
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hence, slot k refers to the time interval [k, k + 1). We assume that the sensor network

is time synchronised (see, [Solis et al., 2006] for achieving time synchrony). An event

occurs at a random time T ∈ Z+ and persists from there on for all k > T . The prior

distribution of T (the time slot at which the event happens) is given by

P {T = k} =





ρ, if k = 0

(1− ρ)(1− p)k−1p, if k > 0,

where 0 < p 6 1 and 0 6 ρ 6 1 represents the probability that the event happened even

before the observations are made. We say that the state of nature, Θk is 0 before the

occurrence of the event (i.e., Θk = 0 for k < T ) and 1 after the occurrence of the event

(i.e., Θk = 1 for k > T ).

At any time k ∈ Z+, the state of nature Θk can not be observed directly and can be

observed only partially through the sensor observations. The observations are obtained

sequentially starting from time slot k = 1 onwards. Before the event takes place, i.e., for

1 6 k < T , sensor i observes X
(i)
k ∈ R the distribution of which is given by F0(·), and

after the event takes place, i.e., for k > T , sensor i observes X
(i)
k ∈ R the distribution

of which is given by F1(·) 6= F0(·) (because of the small extent network, at time T , the

observations of all the sensors switch their distribution to the postchange distribution

F1(·)). The corresponding probability density functions (pdfs) are given by f0(·) and

f1(·) 6= f0(·)1. Conditioned on the state of nature, i.e., given the change point T , the

observations X
(i)
k s are independent across sensor nodes and across time. The event

and the observation models are essentially the same as in the classical change detection

problem, [Shiryaev, 1978] and [Veeravalli, 2001].

The observations are transmitted to a fusion centre. The communication between

the sensors and the fusion centre is assumed to be error–free and completes before the

next measurements are taken2. At time k, let Mk = {ik,1, ik,2, · · · , ik,Mk
} ⊆ {1, 2, · · · , n}

1If the observations are quantised, one can work with probability mass functions instead of pdfs.
2This could be achieved by synchronous time division multiple access, with robust modulation and

coding. For a formulation that incorporates a random access network (but not sleep –wake scheduling),
see [Prasanthi and Kumar, 2006] and [Premkumar et al.].
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be the set of sensor nodes that are in the awake state, and the fusion centre receives a

vector of Mk observations Yk = XMk

k :=
[
X

(ik,1)

k , X
(ik,2)

k , · · · , X(ik,Mk
)

k

]
. At time slot k,

based on the observations so far Y[1:k],
3 the distribution of T , f0(·), and f1(·), the fusion

centre

1. makes a decision on whether to raise an alarm or to continue sampling, and

2. if it decides to continue sampling, it determines the number of sensors that must

be in the awake state in time slot k + 1.

Let Dk ∈ {0, 1} be the decision made by the fusion centre to “continue sampling” in time

slot k + 1 (denoted by 0) or “stop and raise an alarm” (denoted by 1). If Dk = 0, the

fusion centre controls the set of sensors to be in the awake state in time slot k + 1, and

if Dk = 1, the fusion centre chooses Mk+1 = ∅. Let Ak ∈ A be the decision (or control

or action) made by the fusion centre after having observed Yk at time k. We note that

Ak also includes the decision Dk. Also, the action space A depends on the feedback

strategy between the fusion centre and the sensor nodes which we discuss in detail in

Section 3.3. Let Ik := [Y[1:k], A[0,k−1]] be the information available to the decision maker

at the beginning of slot k. The action or control Ak chosen at time k depends on the

information Ik (i.e., Ak is Ik measurable).

The costs involved are i) λs, the cost due to (sampling + computation+ communication)

per observation per sensor, ii) λf , the cost of false alarm, and iii) the detection delay,

defined as the delay between the occurrence of the event and the detection, i.e., (τ−T )+,

where τ is the time instant at which the decision maker stops sampling and raises an

alarm4. Let ck : {0, 1} × {(0, 0), (0, 1), · · · , (0, n), (1, 0)} → R+ be the cost incurred at

time slot k. For k 6 τ , the one step cost function is defined (when the state of nature is

Θk, the decision made is Dk, and the number of sensors in the awake state in the next

3The notation Y[k1:k2] defined for k1 ≤ k2 means the vector [Yk1
, Yk1+1, · · · , Yk2

].
4We note here that the event {τ = k} is completely determined by the information Ik, and hence, τ

is a stopping time with respect to the sequence of random variables I1, I2, · · · .
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time slot is Mk+1) as

ck(Θk, Dk,Mk+1) :=





λsMk+1, if Θk = 0, Dk = 0

λf , if Θk = 0, Dk = 1

1 + λsMk+1, if Θk = 1, Dk = 0

0, if Θk = 1, Dk = 1

(3.1)

and for k > τ , ck(·, ·, ·) := 0. Note that in the above definition of the cost function, if

the decision Dk is 1, then Mk+1 is always 0. The cost ck(Θk, Dk,Mk+1) can be written

as

ck(Θk, Dk,Mk+1)

=





λf · 1{Θk=0}1{Dk=1} +
(
1{Θk=1} + λsMk+1

)
1{Dk=0}, if k 6 τ

0, otherwise.
(3.2)

We are interested in obtaining a quickest detection procedure that minimises the

mean detection delay and the cost of observations by sensor nodes in the awake state

subject to the constraint that the probability of false alarm is bounded by α, a desired

quantity. We thus have a constrained optimization problem,

minimise E

[
(τ − T )+ + λs

τ∑

k=1

Mk

]
(3.3)

subject to P {τ < T} 6 α

where τ is a stopping time with respect to the sequence I1, I2, · · · (i.e., τ ∈ σ({I1, I2, · · · }),
the stopping time τ is measurable with respect to the sigma field generated by the random

variables, I1, I2, · · · ). The above problem would also arise if we imposed a total energy

constraint on the sensors until the stopping time (in which case, λs can be thought of as

the Lagrange multiplier that relaxes the energy constraint). Let λf be the cost of false

alarm. The expected total cost (or the Bayes risk) when the stopping time is τ is given
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by

R(τ) = λfP {τ < T}+ E

[
(τ − T )+ + λs

τ∑

k=1

Mk

]

= E

[
λf1{Θτ=0} +

τ−1∑

k=0

(
1{Θk=1} + λsMk+1

)
]

= E

[
cτ (Θτ , 1, 0) +

τ−1∑

k=0

ck(Θk, 0,Mk+1)

]

= E

[
τ∑

k=0

ck(Θk, Dk,Mk+1)

]

(a)
= E

[
∞∑

k=0

ck(Θk, Dk,Mk+1)

]

(b)
=

∞∑

k=0

E[ck(Θk, Dk,Mk+1)] (3.4)

where step (a) follows from ck(·, ·, ·) = 0 for k > τ , and step (b) follows from the monotone

convergence theorem. Note that λf is a Lagrange multiplier and is chosen such that the

false alarm constraint is satisfied with equality, i.e., PFA = α (see [Shiryaev, 1978]).

We note that the stopping time τ is related to the control sequence {Ak} in the

following manner. For any stopping time τ , there exists a sequence of functions (also

called a policy) ν = (ν1, ν2, · · · ) such that for any k, when τ = k, Dk′ = νk′(Ik′) = 0 for

all k′ < k and Dk′ = νk′(Ik′) = 1 for all k′ > k. Thus, the unconstrained expected cost

given by Eqn. 3.4 is

R(τ) =
∞∑

k=0

E[ck(Θk, Dk,Mk+1)] =
∞∑

k=0

E[ck(Θk, νk(Ik),Mk+1)]

=

∞∑

k=0

E[E[ck(Θk, νk(Ik),Mk+1) | Ik]]

(a)
= E

[
∞∑

k=0

E[ck(Θk, νk(Ik),Mk+1) | Ik]
]

(3.5)

= E

[
τ∑

k=0

E[ck(Θk, νk(Ik),Mk+1) | Ik]
]
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where step (a) above follows from the monotone convergence theorem. From Eqn. 3.2,

it is clear that for k 6 τ

E[ck(Θk, νk(Ik),Mk+1) | Ik]

= E
[
λf · 1{Θk=0} · 1{νk(Ik)=1}

]
+ E
[(
1{Θk=1} + λsMk+1

)
· 1{νk(Ik)=0} | Ik

]

= λf · E
[
1{Θk=0} | Ik

]
· 1{νk(Ik)=1} +

(
E
[
1{Θk=1} | Ik

]
+ λs · E[Mk+1 | Ik]

)
· 1{νk(Ik)=0}

For k 6 τ , define the a posteriori probability of the change having occurred at or before

time slot k, Πk := E
[
1{Θk=1}

Ik
]
, and hence, we have

E[ck(Θk, νk(Ik),Mk+1) | Ik] = λf · (1− Πk)1{νk(Ik)=1} + (Πk + λs · E[Mk+1 | Ik]) 1{νk(Ik)=0}.(3.6)

Thus, we can write the Bayesian risk given in Eqn. 3.5 as

R(τ) = E

[
λf · (1− Πτ ) +

τ−1∑

k=0

(Πk + λsE[Mk+1 | Ik])
]

(3.7)

We are interested in obtaining an optimal stopping time τ and an optimal control of the

number of sensors in the awake state. Thus, we have the following problem,

minimise E

[
λf · (1− Πτ ) +

τ−1∑

k=0

(Πk + λsE[Mk+1 | Ik])
]

(3.8)

We consider the following possibilities for the problem defined in Eqn. 3.8.

1. Closed loop control on Mk+1: At time slot k, the fusion centre makes a decision

on Mk+1, the number of sensors in the awake state in time slot k+1, based on the

information available (at the fusion centre) up to time slot k. The decision is then

fed back to the sensors via a feedback channel. Thus, the problem becomes

min
τ,M1,M2,··· ,Mτ

E

[
λf(1− Πτ ) +

τ−1∑

k=0

(Πk + λsMk+1)

]
(3.9)
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2. Closed loop control on qk+1: At time slot k, the fusion centre makes a decision

on qk+1, the probability that a sensor is in the awake state at time slot k+1 based

on the information Ik. qk+1 is then broadcast via a feedback channel to the sensors.

Thus, given Ik, the number of sensors in the awake state Mk+1, at time slot k+1,

is Bernoulli distributed with parameters (n, qk+1) and E[Mk+1 | Ik] = nqk+1. Thus,

the problem defined in Eqn. 3.8 becomes

min
τ,q1,q2··· ,qτ

E

[
λf(1− Πτ ) +

τ−1∑

k=0

(Πk + λsnqk+1)

]
(3.10)

3. Open loop control on q: Here, there is no feedback between fusion centre and

the sensor nodes. At time slot k, each sensor node is in the awake state with

probability q. Note that Mk, the number of sensors in the awake state at time slot

k is Bernoulli distributed with parameters (n, q). Also note that {Mk} process is

i.i.d. and E[Mk+1 | Ik] = nq (also, Mk+1 is independent of the information vector

Ik). Note that the probability q is constant over time. Thus, the problem defined

in Eqn. 3.8 becomes

min
τ

E

[
λf(1− Πτ ) +

τ−1∑

k=0

(Πk + λsnq)

]
(3.11)

Here, q is chosen (at time k = 0) such that it minimises the above cost.

Note that the first two scenarios require a feedback channel between the fusion centre

and the sensors whereas the last scenario does not require a feedback channel.

In Section 3.3, we formulate the optimization problem defined in Eqns. 3.9 and 3.10

in the framework of MDP and study the optimal closed loop sleep –wake scheduling

policies. In Section 3.4, we formulate the optimization problem defined in Eqn. 3.11 in

the MDP framework and obtain the optimal probability q of a sensor in the awake state.
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3.3 Quickest Change Detection with Feedback

In this section, we study the sleep –wake scheduling problem when there is feedback from

the fusion centre to the sensors.

At time slot k, the fusion centre receives a Mk–vector of observations Yk, and

computes Πk. Recall that Πk = P
{
T 6 k

Ik
}

is the a posteriori probability of the

event having occurred at or before time slot k. For the event detection problem,

a sufficient statistic for the sensor observations at time slot k is given by Πk (see

[Lehmann and Casella, 1998] and page 244, [Bertsekas, 2000a]). When an alarm is raised,

the system enters into a terminal state ‘t’. Thus, the state space of the {Πk} process is

S = [0, 1] ∪ {t}. Note that Πk is also called the information state of the system.

In the rest of the section, we explain the MDP formulation that yields the closed loop

sleep –wake scheduling algorithms.

3.3.1 Control on the number of sensors in the awake state

In this subsection, we are interested in obtaining an optimal control onMk+1, the number

of sensors in the awake state, based on the information we have at time slot k.

At time slot k, after having observed XMk

k , the fusion centre computes the sufficient

statistic Πk. Based on Πk, the fusion centre makes a decision to stop or to continue

sampling. If the decision is to continue at time slot k + 1, the fusion centre (which

also acts as a controller) chooses Mk+1, the number of sensors to be in the awake state

at time slot k + 1. The fusion centre also keeps track of the residual energy in the

sensor nodes, based on which it chooses the set of sensor nodes Mk+1 that must be

in the awake state in time slot k + 1. Since, the prechange and the postchange pdfs

of the observations are the same for all the sensor nodes and at any time, the sensor

observations are conditionally independent across sensors, any observation vector of size

m has the same pdf and hence, for decision making, it is sufficient to look at only the

number of sensors in the awake state Mk+1, i.e., the indices of the sensor nodes that

are in the awake state are not required for detection (we assume that the fusion centre
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chooses the sequence M1,M2, · · · in such a way that the rate at which the sensor nodes

drain their energy is the same). Thus, the set of controls at time slot k is given by

A =

{
(stop, 0),

⋃
m∈{0,1,··· ,n}(continue, m)

}
=
{
(1, 0), (0, 0), (0, 1), · · · , (0, n)

}
.

We show that Πk can be computed in a recursive manner from the previous state

Πk−1, the previous action Ak−1, and the current observation XMk

k as,

Πk = Φ(Πk−1, Ak−1,X
Mk

k )

:=





t, if Πk−1 = t

t, if Ak−1 = 1

Π̃k−1φ1

(
X

Mk
k

)

φ2

(
X

Mk
k

;Π̃k−1

) , if Πk−1 ∈ [0, 1], Ak−1 = (0,Mk)

(3.12)

where

Π̃k := Πk + (1− Πk)p,

φ0

(
XMk

k

)
:=

∏

i∈Mk

f0(X
(i)
k ),

φ1

(
XMk

k

)
:=

∏

i∈Mk

f1(X
(i)
k ),

φ2

(
XMk

k ; Π̃
)

:= Π̃φ1

(
XMk

k

)
+ (1− Π̃)φ0

(
XMk

k

)
(3.13)

Thus, the a posteriori probability process {Πk} is a controlled Markov process. Note that

Π̃k = Πk +(1−Πk)p = E[Πk+1] before X
Mk+1

k+1 is observed. Motivated by the structure of

the cost given in Eqn. 3.6, we define the one stage cost function c̃ : S × A → R+ when

the (state, action) pair is (s, a) as

c̃(s, a) =





λf (1− π) , if s = π ∈ [0, 1], a = (1, 0)

π + λsm, if s = π ∈ [0, 1], a = (0, m)

0, if s = t.

Since Mk+1 is chosen based on the information Ik, there exists a function ν ′
k such that

Mk+1 = ν ′
k(Ik). Thus, the action or control at time k is given by µk(Ik) = (νk(Ik), ν

′
k(Ik)).
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Hence, we can write the Bayesian risk given in Eqn. 3.4 for a policy µ = (µ1, µ2, · · · ) as

R(τ) = E

[
∞∑

k=0

c̃ (Πk, µk(Ik))

]

= E

[
∞∑

k=0

c̃ (Πk, µ̃k(Πk))

]
(3.14)

Since Πk is a sufficient statistic for Ik, for any policy µk there exists a corresponding policy

µ̃k such that µ̃k(Πk) = µk(Ik), and hence, the last step in the above equation follows

(see page 244, [Bertsekas, 2000a]) Since, the one stage cost and the density function

φ2(y; Π̃k−1) are time invariant, it is sufficient to consider the class of stationary policies

(see Proposition 2.2.2 of [Bertsekas, 2007]). Let µ̃ : S → A be a stationary policy. Hence,

the cost of using the policy µ̃ is given by

Jµ̃(π0) = E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]
,

and hence, the minimal cost among the class of stationary policies is given by

J∗(π0) = min
µ̃

E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]
.

The dynamic program (DP) that solves the above problem is given by the Bellman’s

equation,

J∗(π) = min

{
c̃(π, 1), HJ∗(π)

}
(3.15)

where the function HJ∗ : [0, 1] → R+ is defined as

HJ∗(π) := min
06m6n

{
c̃(π, (0, m)) + Eφ2(y;π̃)[J

∗ (Φ(π, (0, m),Y))]
}

(3.16)

where Y and y are m–vectors. The notation Eφ2(y;π̃)[·] means that the expectation is

taken with respect to the pdf φ2(y; π̃) (recall Eqn. 3.13 for the definition of φ2(y; π̃)).
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Thus, Eqn. 3.15 can be written as

J∗(π) = min
{
λf ·

(
1− π

)
, π + AJ∗

(
π
)}

(3.17)

where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π) = min
06m6n

{
λsm+ Eφ2(y;π̃)

[
J∗

(
π̃ · φ1(Y)

φ2(Y; π̃)

)]}
(3.18)

The optimal policy µ∗ that achieves J∗ gives the optimal stopping rule, τ ∗, and the

optimal number of sensors in the awake state, M∗
1 ,M

∗
2 , · · · ,M∗

τ∗ .

We now establish some properties of the minimum total cost function J∗.

Theorem 3.1 The total cost function J∗(π) is concave in π.

Also, we establish some properties of the optimal policy µ∗ (which maps the a posteriori

probability of change Πk to the action space A) in the next theorem.

Theorem 3.2 The optimal stopping rule is given by the following threshold rule where

the threshold is on the a posteriori probability of change,

τ ∗ = inf{k : Πk > Γ}, (3.19)

for some Γ ∈ [0, 1]. The threshold Γ depends on the probability of false alarm constraint,

α (among other parameters like the distribution of T , f0, f1).

Theorem 3.2 addresses only the stopping time part of the optimal policy µ∗. We now

explore the structure of the optimal closed loop control policy for M∗ : [0, 1] → Z+, the

optimal number of sensors in the awake state in the next time slot. At time k, based on

the (sufficient) statistic Πk, the fusion centre chooses M∗
k+1 = M∗(Πk) number of sensor

nodes in the awake state. For each 0 6 m 6 n, we define the functions B
(m)
J∗ : [0, 1] → R+
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and A
(m)
J∗ : [0, 1] → R+ as

B
(m)
J∗ (π) := Eφ2(y;π̃)

[
J∗

(
π̃ · φ1(Y)

φ2(Y; π̃)

)]
,

and A
(m)
J∗ (π) := λsm+B

(m)
J∗ (π).

We have shown in the proof of Theorem 3.1 that for any m = 0, 1, 2, · · · , n, the functions
B

(m)
J∗ (π) and A

(m)
J∗ (π) are concave in π.

Theorem 3.3 For any π ∈ [0, 1], the functions B
(m)
J∗ (π) monotonically decrease with m.

Remark: By increasing the number of sensor nodes in the awake state, i.e., by increasing

m, we expect that the a posteriori probability of change will get closer to 1 or closer to

0 (depending on whether the change has occurred or not). In either case, the one stage

cost decreases, and hence, we expect that the functions B
(m)
J∗ (π) monotonically decrease

with m.

At time k, B
(m)
J∗ (Πk) can be thought of as the cost–to–go function from slot k +

1 onwards (having used m sensor nodes at time k + 1). Note that A
(m)
J∗ (π) has two

components, the first component λsm increases with m and (from Theorem 3.3) the

second component decreases with m. As m takes values in a finite set {0, 1, 2, · · · , n},
for each π, there exists an optimal M∗(π) for which A

(M∗(π))
J∗ (π) is minimum. For any

given π ∈ [0, 1], we define the differential cost d : {1, 2, · · · , n} → R+ as

d(m; π) = B
(m−1)
J∗ (π)− B

(m)
J∗ (π). (3.20)

Note that for any 1 6 m 6 n, d(m; π) is bounded and continuous in π (as B
(m)
J∗ s are

bounded and concave in π). Also note that d(m; 1) = 0 as B
(m−1)
J∗ (1) = B

(m)
J∗ (1) = 0.

We are interested in d(m; π) for π ∈ [0, Γ). In Figure 3.1, we plot d(m; π) against π for

m = 1, 2, and 3 (for the set of parameters n = 10, λf = 100, λs = 0.5, and f0 and f1 are

unit variance Gaussian pdfs with means 0 and 1 respectively; also d(m; π) is computed

from B
(m)
J∗ (π) which in turn is obtained by averaging through 100 simulation runs using

J∗(·) which we will obtain in Section 3.5). We observe that d(m; π) monotonically
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Figure 3.1: Differential costs, d(·; π), for n = 10 sensors, λf = 100.0, λs = 0.5, f0 ∼
N (0, 1) and f1 ∼ N (1, 1).

decreases in m, for each π ∈ [0,Γ) (i.e., d(1; π) > d(2; π) > d(3; π)). We have observed

this monotonicity property for different sets of experiments for the case when f0 and

f1 belong to the Gaussian class of distributions. We conjecture that this monotonicity

property of d holds and state the following theorem which gives a structure for M∗, the

optimal number of sensors in the awake state.

Theorem 3.4 If for each π ∈ [0,Γ), d(m; π) decreases monotonically in m, then the

optimal number of sensors in the awake state, M∗ : [0, 1] → {0, 1, · · · , n} is given by

M∗(π) = max
{
m : d(m; π) > λs

}
.

3.3.2 Control on the probability of a sensor in the awake state

In this subsection, we are interested in obtaining an optimal control on qk+1, the probability

of a sensor in the awake state, based on the information we have at time slot k, instead

of determining the number of sensors that must be in the awake state in the next slot.

At time slot k, after having observed XMk

k , the fusion centre computes the sufficient
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statistic Πk, based on which it makes a decision to stop or to continue sampling. If the

decision is to continue at time slot k + 1, the fusion centre (also acts as a controller)

chooses qk+1, the probability of a sensor to be in the awake state at time slot k + 1.

Thus, the set of controls at time slot k is given by A =

{
(stop, 0),∪q∈[0,1](continue, q)

}

=

{
1,∪q∈[0,1](0, q)

}
= {(1, 0), {0} × [0, 1]}.

When the control Ak = (0, qk+1) is chosen, Mk+1, the number of sensors in the awake

state at time slot k + 1 is Bernoulli distributed with parameters (n, qk+1). Let γm(qk+1)

be the probability that m sensors are in the awake state at time slot k + 1. γm(qk+1) is

given by

γm(qk+1) =

(
n

m

)
qmk+1(1− qk+1)

n−m. (3.21)

The information state at time slot k Πk, can be computed in a recursive manner from

Πk−1, Ak−1 and XMk

k using Eqn. 3.12. Thus, it is clear that the {Πk} process is a

controlled Markov process, the state space of the process being S = [0, 1]∪{t}. Motivated

by the cost function given in Eqn. 3.6, define the one stage cost function c̃ (s, a) when

the (state,action) pair is (s, a) as

c̃ (s, a) =





λf(1− π), if s = π ∈ [0, 1], a = (1, 0)

π + λsnq, if s = π ∈ [0, 1], a = (0, q)

0, if s = t.

Since, the one stage cost and the density function φ2(y; Π̃k−1) are time invariant, it is

sufficient to consider the class of stationary policies (see Proposition 2.2.2 of [Bertsekas, 2007]).

Let µ̃ : S → A be a stationary policy. Hence, the cost of using the policy µ̃ is given by

Jµ̃(π0) = E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]
,
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and hence the minimal cost among the class of stationary policies is given by

J∗(π0) = min
µ̃

E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]
.

The DP that solves the above problem is given by the Bellman’s equation,

J∗(π) = min {c̃(π, 1), HJ∗(π)}

where HJ∗ : [0, 1] → R+ is defined as

HJ∗(π) := min
06q61

{
c̃(π, (0, q)) +

n∑

m=0

γm(q)Eφ2(y;π̃)

[
J∗
(
Φ(π, (0, m),Y

)]
}

where Y and y are m–vectors. Recall that the expectation is taken with respect to the

pdf φ2(y; π̃). The Bellman’s equation can be written as

J∗(π) = min
{
λf ·

(
1− π

)
, π + AJ∗

(
π
)}

(3.22)

where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π) = min
q∈[0,1]

{
λsnq +

n∑

m=0

γm(q)Eφ2(y;π̃)

[
J∗

(
π̃ · φ1(Y)

φ2(Y; π̃)

)]}
.

The optimal policy µ∗ gives the optimal stopping time τ ∗, and the optimal probabilities,

q∗k, k = 1, 2, · · · , τ ∗. The structure of the optimal policy is shown in the following

theorems.

Theorem 3.5 The total cost function J∗(π) is concave in π.
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Theorem 3.6 The optimal stopping rule is a threshold rule where the threshold is on

the a posteriori probability of change,

τ ∗ = inf{k : Πk > Γ},

for some Γ ∈ [0, 1]. The threshold Γ depends on the probability of false alarm constraint,

α (among other parameters like the distribution of T , f0, f1).

3.4 Quickest Change Detection without Feedback

In this section, we study the sleep –wake scheduling problem defined in Eqn. 3.11. Open

loop control is applicable to the systems in which there is no feedback channel from the

fusion centre (controller) to the sensors. Here, at any time slot k, a sensor chooses to be

in the awake state with probability q independent of other sensors. Hence, {Mk}, the
number of sensors in the awake state at time slot k is i.i.d. Bernoulli distributed with

parameters (n, q). Let γm be the probability that m sensors are in the awake state. γm

is given by

γm =

(
n

m

)
qm(1− q)n−m (3.23)

We choose q that minimises the Bayesian cost given by Eqn. 3.11.

At time slot k, the fusion centre receives a vector of observation XMk

k and computes

Πk. In the open loop scenario, the state space is S =
{
[0, 1] ∪ {t}

}
. The set of actions

is given by A = {stop, continue} = {1, 0} where ‘1’ represents stop and ‘0’ represents

continue. Note that Πk can be computed from Πk−1, Ak−1, and XMk

k in the same way

as shown in Eqn. 3.12. Thus, {Πk}, k ∈ Z+ is a controlled Markov process. Motivated

by the structure of the cost given in Eqn. 3.6, we define the one stage cost function
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c̃ : S × A → R+ when the (state, action) pair is (s, a) as

c̃(s, a) =





λf(1− π), if s = π ∈ [0, 1], a = 1

π + λsnq, if s = π ∈ [0, 1], a = 0

0, if s = t.

Since, the one stage cost and the density function φ2(y; Π̃k−1) are time invariant, it is

sufficient to consider the class of stationary policies (see Proposition 2.2.2 of [Bertsekas, 2007]).

Let µ̃ : S → A be a stationary policy. Hence, the cost of using the policy µ̃ is given by

Jµ̃(π0) = E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]
,

and the optimal cost under the class of stationary policies is given by

J∗(π0) = min
µ̃

E

[
∞∑

k=0

c̃(Πk, µ̃(Πk))

Π0 = π0

]

The DP that solves the above equation is given by the Bellman’s equation,

J∗(π) = min

{
c̃(π, 1), HJ∗(π)

}

where HJ∗ : [0, 1] → R+ is defined as

HJ∗(π) := c̃(π, 0) +
n∑

m=0

γmEφ2(y;π̃)

[
J∗

(
Φ(π, (0, m),Y)

)]

where Y and y are m–vectors. The above equation can be written as

J∗(π) = min
{
λf ·

(
1− π

)
, π + AJ∗

(
π
)}

. (3.24)
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where the function AJ∗ : [0, 1] → R+ is defined as

AJ∗(π) = λsnq +
n∑

m=0

γmEφ2(y;π̃)

[
J∗

(
π̃ · φ1(Y)

φ2(Y; π̃)

)]
.

The optimal policy µ∗ that achieves J∗ gives the optimal stopping rule, τ ∗. We now

prove some properties of the optimal policy.

Theorem 3.7 The optimal total cost function J∗(π) is concave in π.

Theorem 3.8 The optimal stopping rule is a threshold rule where the threshold is on

the a posteriori probability of change,

τ ∗ = inf{k : Πk > Γ},

for some Γ ∈ [0, 1]. The threshold Γ depends on the probability of false alarm constraint,

α (among other parameters like the distribution of T , f0, f1).

For each q ∈ [0, 1], we compute the optimal mean detection delay ADD (as a function

of q), and then find the optimal q∗ for which the optimal mean detection delay is

minimum.

3.5 Numerical Results

We compute the optimal policy for each of the sleep –wake scheduling strategies given

in Eqns. 3.17, 3.22, 3.24 using value–iteration technique (see [Bertsekas, 2000a]) for

1000 iterations. We consider n = 10 sensors. The distributions of change–time T is

taken to be geometric (0.01) (and π0 = 0). Also, the prechange and the postchange

distributions of the sensor observations are taken to be N (0, 1) and N (1, 1). We set the

cost per observation per sensor, λs to 0.5 and the cost of false alarm, λf to 100.0 (this

corresponds to α = 0.04).
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Figure 3.2: Optimum number of sensors in the awake state M∗ for n = 10 sensors,
λf = 100.0, λs = 0.5, f0 ∼ N (0, 1) and f1 ∼ N (1, 1). Note that Γ = 0.9 corresponds to
the threshold.

• Optimal control of Mk+1:

We computeM∗ the optimal number of sensors to be in the awake state in time slot

k + 1 as a function of the a posteriori probability of change π (from the optimal

policy µ∗ given by Eqn.3.17) by the value iteration algorithm [Bertsekas, 2007],

[Hernández-Lerma and Lasserre, 1996], the number of iterations taken being 1000,

and plot in Figure 3.2. We note that in any time slot, it is not economical to use

more than 3 sensors (though we have 10 sensors). Also, from Figure 3.2, it is clear

that M∗ increases monotonically for π < 0.6 and then decreases monotonically for

π > 0.6. Note that, the region π ∈ [0.5, 0.82] requires many sensors for optimal

detection whereas the region [0.0, 0.3] ∪ [0.9, 1.0] requires the least number of

sensors. This is due to the fact that uncertainty (about whether an event has

occurred or not) is more in the region π ∈ [0.5, 0.82] whereas it is less in the region

[0.0, 0.3] ∪ [0.9, 1.0].

In Figure 3.3, we plot the trajectory of a sample path of Πk versus the time slot

k. In our numerical experiment, the event occurs at T = 152. When the number

of sensors to be in the awake state Mk+1 is M∗(πk) (taken from Figure 3.2), for a
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Figure 3.3: A sample run of event detection with n = 10 sensors, λf = 100.0, λs = 0.5,
f0 ∼ N (0, 1) and f1 ∼ N (1, 1).
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threshold of 0.9, we see that the detection happens at τM∗ = 161. When Mk+1 = 10

sensors (no sleep scheduling), we find the detection epoch to be τ10 = 153. When

Mk+1 = 3 sensors (we chose 3 because M∗ 6 3), the stopping happens at τ3 = 156.

From the above stopping times, it is clear that the detection delay does not vary

significantly in the above three cases. By having an optimal sleep –wake scheduling,

we observe that until the event occurs only one sensor is in awake state and

as soon as the event occurs, the sleep –wake scheduler ramps up the number of

sensors to 3, thereby making a quick decision. Thus, the optimal sleep –wake

scheduling uses a minimal number of sensors before change and quickly ramps up

the number of sensors after change for quick detection. Also, we see from Figure 3.3,

that the πk trajectory corresponding to Mk+1(π) = 10 (and Mk+1(π) = 3) gives

more reliable information about the event than the πk trajectory corresponding to

Mk+1(π) = M∗.

We also plot the total cost function J(π) for the above cases in Figure 3.4. Though

the detection delays do not vary much, the total cost varies significantly. This is

because the event happens at time slot T = 152. In the case of Mk+1 = M∗, it is
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clear from Figures 3.2 and 3.3 that only one sensor is used for the first 158 time

slots. This reduces the cost by 10 times compared to the case of Mk+1 = 10 (in this

sample path) and about 3 times compared to the case of Mk+1 = 3 (in this sample

path). We note from Figure 3.4, that it is better to keep 3 sensors active all the

time than keeping 10 sensors active all the time. Also, in the case of Mk+1 = 1,

after the event occurs, the a posteriori probability takes more time to cross the

threshold compared to the optimal sleep –wake (which quickly ramps up from 1 to

3 sensors) and hence, the total cost corresponding to Mk+1 = 1 is slightly worse

than that of Mk+1 = M∗.

• Optimal control of qk+1: In the case of control on qk, we consider the same set of

parameters as in the case of control on Mk. We computed the optimal policy from

the DP defined in Eqn. 3.22 by value iteration method (with 1000 iterations). The

optimal policy also gives the optimal probability of choosing a sensor in the awake

state, q∗k+1. We plot the total cost J∗(π) in Figure 3.5. We also plot the optimum

probability of a sensor in the awake state, q∗(π) in Figure 3.6. We observe that

for π ≤ 0.72, q∗(π) is an increasing function of π, and for π > 0.72, q∗(π) decreases

with π. This agrees well with the intuition for the optimal control on Mk+1.
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Figure 3.6: Optimum probability of a sensor in the awake state, q∗k+1(π) for n = 10
sensors, λf = 100.0, λs = 0.5, f0 ∼ N (0, 1) and f1 ∼ N (1, 1).
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• Open loop control on q:

We consider the same set of parameters for the case of open loop control on q.

We obtain J∗(0) for various values of q and plotted in the Figure 3.7. We obtain

the plot for λs = 0.5 and for λs = 0.0. In the special case of q = 1, i.e., having

Mk+1 = 10 sensors, and with λs = 0.5, we observe that the total cost is 100 which

matches with the corresponding cost in Figure 3.4. Also, in the limiting case of

q → 0, all the sensor nodes are in the sleep state at all time slots, and the detection

happens only based on Bayesian update (i.e., based on the prior distribution of T ).

Thus at q = 0, the total cost is the same (which is 73) for λs = 0.5 and λs = 0.0

which is also evident from Figure 3.7.

Note that when λs > 0, for low values of q, the detection delay cost dominates

over the observation costs in J∗(0) and for high values of q, the observation costs

dominate over the detection delay cost. Thus, there is a trade–off between the

detection delay cost and the observation costs as q varies. This is captured in the

Figure 3.7. Note that the Bayesian cost is optimal at q = 0.15.

When λs = 0 (i.e., the cost of using a sensor per time slot is 0), it is always optimum

to use as many sensors as possible at any time slot. Thus, in the open–loop control,

between the probabilities of choosing a sensor in the awake state, q1 and q2 with

q1 < q2, it is always optimum to use q2 (since, by choosing q2, more sensors will be

in the awake state, and hence the detection could happen earlier). Since, detection

delay is the only cost for λs = 0, (more sensors or) a higher probability of choosing

a sensor in the awake state q results in (earlier detection or) lower cost.

From Figures 3.4, 3.5, and 3.7, we note that the total cost J(π) is the least for

optimal control on Mk+1. Also, we note that in the open loop control case, the least

total cost J∗(0) = 55 is achieved when the attempt probability, q is 0.15 (see Figure 3.7;

this corresponds to an average of 1.5 sensors being active). It is to be noted that this

cost is larger than that achieved by the optimal closed loop policies (J∗(0) = 50 for the

closed loop control on qk+1 and J∗(0) = 38 for the closed loop control on Mk+1). From
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Figures 3.3 and 3.2, we see that when Mk+1(π) = M∗(π), the switching of the sensors

between sleep and awake states happen only in 2 slots out of 161 slots. Otherwise only

1 sensor is on.

3.6 Conclusion

In this chapter, we formulated the problem of jointly optimal sleep –wake scheduling and

event detection in a sensor network that minimises the detection delay and the usage

of sensing/communication resources. We have set out to solve the problem in Eqn. 3.8.

We have derived the optimal control for three approaches using the theory of MDP. We

showed the existence of the optimal policy and obtained some structural results.

We prescribe the sleep –wake scheduling policies as follows: When there is a feedback

between the fusion centre and the sensors and if the feedback is unicast, it is optimal to

use the control on Mk+1 policy; when the feedback is only broadcast, then it is optimal

to use the control on qk+1. If there is no feedback between the fusion centre and the

sensors, we prescribe the open loop control on q policy.
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3.7 Appendix

Proof of Theorem 3.1

We use the following Lemma to prove Theorem 3.1.

Lemma 3.1 If f : [0, 1] → R is concave, then for any x ∈ Rm (for any m ∈ Z+), the

function h : [0, 1] → R defined by

h(y) = Eφ2(x;y)

[
f

(
yφ1(X)

yφ1(X) + (1− y)φ0(X)

)]

is concave in y, where φ1(x) and φ0(x) are pdfs on X, and φ2(x; y) = yφ1(x) + (1 −
y)φ0(x).

Proof For any given x, define the function h1 : [0, 1] → R as

h1(y;x) := f

(
yφ1(x)

yφ1(x) + (1− y)φ0(x)

)[
yφ1(x) + (1− y)φ0(x)

]
.

As T :=
∫
· · · dx is a linear operator and h(y) = Th1(y;x), it is sufficient to show that

h1(y;x) is concave in y. If f(y) is concave then (see [Rockafellar, 1997])

f(y) = inf
(ai,bi)∈I

{
aiy + bi

}

where I = {(a, b) ∈ R2 : ay + b > f(y), y ∈ [0, 1]}. Hence,

h1(y;x)

=f

(
yφ1(x)

yφ1(x) + (1− y)φ0(x)

)[
yφ1(x) + (1− y)φ0(x)

]

= inf
(ai,bi)∈I

{
ai

(
yφ1(x)

yφ1(x) + (1− y)φ0(x)

)
+ bi

}

·
[
yφ1(x) + (1− y)φ0(x)

]

= inf
(ai,bi)∈I

{
aiyφ1(x) + bi

[
yφ1(x) + (1− y)φ0(x)

]}

= inf
(ai,bi)∈I

{(
(ai + bi)φ1(x)− biφ0(x)

)
y + biφ0(x)

}
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which is an infimum of a collection of affine functions of y. This implies that h1(y;x) is

concave in y (see [Rockafellar, 1997]). �

The optimal total cost function J∗(π) can be computed using a value iteration

algortithm. Here, we first consider a finite K–horizon problem and then we let k → ∞,

to obtain the infinite horizon problem.

Note that the cost–to–go function, JK
K (π) = λf ·

(
1 − π

)
is concave in π. Hence,

by Lemma 3.1, we see that the cost–to–go functions JK
K−1(π), J

K
K−2(π), · · · , JK

0 (π) are

concave in π. Hence for 0 6 λ 6 1,

J∗(π) = lim
K→∞

JK
0 (π)

J∗(λπ1 + (1− λ)π2) = lim
K→∞

JK
0

(
λπ1 + (1− λ)π2

)

> lim
K→∞

λJK
0 (π1) + lim

K→∞
(1− λ)JK

0 (π2)

= λJ∗(π1) + (1− λ)J∗(π2)

It follows that J∗(π) is concave in π. �

Proof of Theorem 3.2

Define the maps C : [0, 1] → R+ and H : [0, 1] → R+, as

C(π) := λf ·
(
1− π

)

H(π) := π + AJ∗(π)
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Note that C(1) = 0, H(1) = 1, C(0) = λf and H(0) = AJ∗(0). Note that

AJ∗(0)

= min
06m6n

{
λsm+ Eφ2(X(m);p)

[
J∗

(
p · φ1(X

(m))

φ2(X(m); p)

)]}

6 min
06m6n

{
λsm+ J∗

(
Eφ2(X(m) ;p)

[
p · φ1(X

(m))

φ2(X(m); p)

])}

= min
06m6n

{λsm+ J∗ (p)}

= J∗ (p)

6 λf ·
(
1− p

)
(from Eqn. 16)

The inequality in the second step is justified using Jensen’s inequality and the inequality

in the last step follows from the definition of J∗.

Note that H(1) − C(1) > 0 and H(0) − C(0) < 0. As the function H(π) − C(π)

is concave, by the intermediate value theorem, there exists Γ ∈ [0, 1] such that H(Γ) =

C(Γ). This Γ is unique as H(π) = C(π) for at most two values of π. If in the interval

[0, 1], there are two distinct values of π for which H(π) = C(π), then the signs of

H(0)− C(0) and H(1)− C(1) should be the same. Hence, the optimal stopping rule is

given by

τ ∗ = inf {k : Πk > Γ}

where the threshold Γ is given by Γ + AJ∗(Γ) = λf ·
(
1− Γ

)
.

�
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Proof of Theorem 3.3

Define

φj(x
(m)) :=

m∏

i=1

fj(x
(i)), j = 0, 1.

x(l) := (x(1), x(2), · · · , x(m), x(m+1), · · · , x(l))

u := (x(1), x(2), · · · , x(m))

v := (x(m+1), x(m+2), · · · , x(l))

π̂ :=
π̃φ1(u)

π̃φ1(u) + (1− π̃)φ0(u)

Note that

B
(l)
J∗(π)

=

∫

Rl

J∗

(
π̃ · φ1(x

(l))

φ2(x(l); π̃)

)[
φ2(x

(l); π̃)
]
dx(l)

=

∫

Rm

∫

Rl−m

J∗

(
π̂φ1(v)

φ2(v; π̂)

)
φ2(v; π̂) dvφ2(u; π̃) du

6

∫

Rm

J∗

(∫

Rl−m

π̂φ1(v)

φ2(v; π̂)

[
φ2(v; π̂)

]
dv

)
φ2(u; π̃) du

=

∫

Rm

J∗ (π̂)φ2(u; π̃)du

= B
(m)
J∗ (π)

As J∗ is concave, the inequality in the second line follows from Jensen’s inequality. Hence

proved. �

Proof of Theorem 3.4

Eqn. 3.18 and the monotone property of d(m; .) proves the theorem. �

Proof of Theorem 3.5

Follows from the proof of Theorem 3.1. �



3.7. Appendix 53

Proof of Theorem 3.6

Follows from the proof of Theorem 3.2. �

Proof of Theorem 3.7

Follows from the proof of Theorem 3.1. �

Proof of Theorem 3.8

Follows from the proof of Theorem 3.2. �
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Chapter 4

Quickest Event Detection on Ad

Hoc Wireless Networks

4.1 Introduction

In the previous chapter, we have studied event detection problems when the observations

from the sensor nodes reach the fusion centre in the same slot in which each measurement

is taken. Such communication is possible by means of parallel channels. Practical

multiple access schemes are based on random access where nodes contend for the channel,

and back off and reattempt in the case of a collision. Two popular standards are the

IEEE 802.11 standard for wireless local area networks and the IEEE 802.15.4 standard for

low rate personal area networks; both of these are based on variations of the CSMA/CA

mechanism (see [Kumar et al., 2008]). In this chapter, we are concerned with the situation

in which the sensors communicate their measurements to the fusion centre over a random

access network. The main issue of concern is the following. If the sampling rate at the

sensors is high then the fusion centre is supplied with more information, and this could

reduce detection delay; however, the higher traffic on the multiple access network would

cause increased queueing delays. It is this tradeoff that we study in this chapter.

55
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X1 X2
D2

(1)

D2
(2)

D2
(3)

t t t t t ttt1 2 3 4 5 6 70

sampling instants

vectors of values
to be sent by the 

N sensors

Figure 4.1: The sensors take samples periodically at instants t1, t2, · · · , and prepare to

send to the fusion centre a vector of values Xb =
[
X

(1)
b , X

(2)
b , · · · , X(n)

b

]
at tb. Each

sample is queued as a packet in the queue of the respective node. Due to multiple access
delays, the packets arrive with random delays at the fusion centre; for example, for X2,
the delays D

(1)
2 , D

(2)
2 , D

(3)
2 , for the packets from sensors 1, 2 and 3, are shown.

We consider a small extent network in which the coverage of a sensor includes the

region of interest (ROI) A, i.e., the statistics of the observations are the same at all

the sensors, and the event changes the distribution of observations of all the sensors. n

sensors are deployed in the ROI and they synchronously sample their environment at a

particular sampling rate. Synchronized operation across sensors is practically possible

in networks such as 802.11 WLANs and Zigbee networks since the access point and the

PAN coordinator, respectively, transmit beacons that provide all nodes with a time

reference. Based on the measurement samples, the nodes send certain values (e.g.,

quantized samples) to the fusion centre. Each value is carried by a packet, which is

transmitted using a contention–based multiple access mechanism. We are interested in

employing optimal decision making procedures at the fusion centre for event detection.

In this setting, due to the multiple access network delays between the sensor nodes

and the fusion centre, several possibilities arise. In Figure 4.1 we show that although

the sensors take samples synchronously, due to random access delays the various packets

sent by the sensors arrive at the fusion centre asynchronously. As shown in the figure,

the packets generated due to the samples taken at time t2 arrive at the fusion centre

with a delay of D
(1)
2 , D

(2)
2 , D

(3)
2 , etc. It can even happen that a packet corresponding to

the samples taken at time t3 can arrive at the fusion centre before one of the packets

generated due to the samples taken at time t2.
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fusion centre

Maker
Decision

Network
Random Access

and

Sensors 

1

2

N

Sequencer

Figure 4.2: A conceptual block diagram of wireless sensor network. The fusion centre
has a sequencer buffer which queues out–of–sequence samples and delivers the samples
to the decision maker in time–order, as early as possible, batch–wise or sample–wise.

Figure 4.2 depicts a general queueing and decision making architecture in the fusion

centre. All samples are queued in per–node queues in a sequencer. The way the sequencer

releases the packets gives rise to the following three cases.

1. The sequencer queues the samples until all the samples of a “batch” (a batch is the

set of samples generated at a sampling instant) are accumulated; it then releases the

entire batch to the decision device. The batches arrive to the decision maker in a

time sequence order. The decision maker processes the batches without knowledge

of the state of the network (i.e., reception times at the fusion centre, and the

numbers of packets in the various queues). We call this, Network Oblivious Decision

Making (NODM). In factory and building automation scenarios, there is a major

impetus to replace wireline networks between sensor nodes and controllers. In such

applications, the first step could be to retain the fusion algorithm in the controller,

while replacing the wireline network with a wireless ad hoc network. Indeed,

we show that this approach is optimal for NODM, provided the sampling rate is

appropriately optimized. This problem is studied in [Prasanthi and Kumar, 2006].

2. The sequencer releases samples only in time–sequence order but does not wait for

an entire batch to accumulate. The decision maker processes samples as they arrive.

We call this, Network Aware Decision Making (NADM). In NADM, whenever the

decision maker receives a sample, it has to rollback its decision statistic to the
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sampling instant, update the decision statistic with the received sample and then

update the decision statistic to the current time slot. The decision maker makes a

Bayesian update on the decision statistic even if it does not receive a sample in a

slot. Thus, NADM requires a modification in the decision making algorithm in the

fusion centre. We are interested in studying NADM in this chapter.

3. The sequencer does not queue any samples. The fusion centre acts on the values

from the various sampling instants as they arrive, possibly out of order. The

formulation of such a problem would be an interesting topic for future research.

4.1.1 Summary of Contributions

We summarise the contributions of this chapter below:

1. We formulate the problem of quickest event detection on ad hoc wireless network.

2. We propose a class of decision strategies called NADM, in which the decision maker

makes a decision based on the samples as and when it comes, but in time–sequence

order.

3. We obtain an optimal change detection procedure the mean detection delay of

which is minimal in the class of NADM policies for which PFA 6 α.

4. We study the tradeoff between the sampling rate, r and the mean detection delay.

We also study the detection delay performance as a function of the number of nodes

n, for a given number of observations per unit slot, i.e., for a fixed nr.

4.1.2 Discussion of the Related Literature

In the existing literature on the topic of optimal sequential event detection in wireless

sensor networks, to the best of our knowledge, the only work that considered the network

delay is by Prasanthi and Kumar, [Prasanthi and Kumar, 2006], where the authors

studied the optimal NODM procedure. There has been no other work that incorporates

multiple access delay between the sensing nodes and the fusion centre.
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Interestingly, in this chapter we introduce, what can be called a cross layer formulation

involving sequential decision theory and random access network delays. In particular, we

encounter the fork–join queueing model (see, for example, [Baccelli and Makowski, 1990])

that arises in distributed computing literature.

4.1.3 Outline of the Chapter

In Section 4.2, we discuss the event detection problem and setup the model. In Section 4.3,

we review the change detection problem over a random access network in a way that

naturally includes the network delay. In Section 4.4, we consider the special case of a

network with a star topology, i.e., all nodes are one hop away from the fusion centre

and provide a model for contention in the random access network. In Section 4.5, we

formulate the NADM problem where we process the samples as they arrive at the fusion

centre, but in a time causal manner. The out–of–sequence packets are queued in a

sequencer buffer and are released to the decision maker as early as possible. We show

in the NADM case that the change–detection problem can be modeled as a Partially

Observable Markov Decision Process (POMDP). We show that a sufficient statistic

for the observations include the network state (which include the queue lengths of the

sequencer buffer, network–delays) and the posterior probability of change having occurred

given the measurements received and the network states. As usual, the optimal policy can

be characterised via a Bellman equation, which can then be used to derive insights into

the structure of the policy. We show that the optimal policy is a threshold on the posterior

probability of change and that the threshold, in general, depends on the network state.

Finally, in Section 4.6 we compare, numerically, the mean detection delay performance

of NODM and NADM processing. We show the tradeoff between the sampling rate r and

the mean detection delay. Also, we show the tradeoff between the number of sensors and

the mean detection delay.
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Sampling interval of 1/r slots
Figure 4.3: Time evolves over slots. The length of a slot is assumed to be unity. Thus,
slot k represents the interval [k, k + 1) and the beginning of slot k represents the time
instant k. Samples are taken periodically every 1/r slots, starting from t1 = 1/r.

4.2 Event Detection Problem on Ad Hoc Networks

In this section, we introduce the model for the event detection problem on ad hoc wireless

networks. The notation, we follow, is given here.

• Time is slotted and the slots are indexed by k = 0, 1, 2 . . .. We assume that the

length of a slot is unity and that slot k refers to the interval [k, k + 1). Thus, the

beginning of slot k indicates the time instant k (see Figure 4.3), and the notation

k+ means the time instant just after k and k− means the time instant just before

time instant k.

• The state of nature at slot k, Θk ∈ {0, 1}. 0 represents the state “before change”

and 1 represents the state “after change”. It is assumed that the change time T

(measured in slots), is geometrically distributed, i.e.,

P {T = 0} = ρ

and, for k > 1, P {T = k | T > 0} = p(1− p)(k−1). (4.1)

The value of 0 for T accounts for the possibility that the change took place at or

before time instant k = 0, i.e., before the observations can be made.

• n sensors are synchronously sampling at the rate r samples/slot, i.e., the sensors

make an observation every 1/r slots and send their observations to the fusion
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centre. Thus, for example, if r = 0.1, then a sample is taken by a sensor every

10th slot. We assume that 1/r is an integer. The sampling instants are denoted

t1, t2, . . . (see Figure 4.4). Define t0 = 0; note that the first sample is taken at

t1 = 1/r. We sometimes refer to this as “coarse sampling” since the samples are

taken at some multiples of the basic slot. As a consequence, if a change occurs in

a slot, a sample that observes the change will be taken only at the next sampling

instant, thus leading to what we call “coarse sampling delay.”

• Let Sb, b > 1, be the state of nature at the bth sampling instant and S0 the state

at time 0. Then Sb ∈ {0, 1}, with

P {S0 = 1} = ρ = 1− P {S0 = 0}

Sb evolves as follows. If Sb = 0 for b > 0, then

Sb+1 =





1 w.p. pr

0 w.p. (1− pr)

where pr = 1− (1− p)1/r. Here, if Θtb = 0 and Θtb+1
= 1, then the state of nature

has changed from 0 to 1 at one of the slots b
r
+ 1, b

r
+ 2, · · · , b+1

r
. Denote by K the

first sampling instant after the change occurs. Further, if Sb = 1, then Sb+1 = 1.

Thus, if S0 = 0, then there is a change from 0 to 1 at the Kth sampling instant,

where K is geometrically distributed. For b > 1,

P {K = b} = pr(1− pr)
b−1

• The vector of outputs from the sensor devices at the bth batch is denoted by

Xb =
[
X

(1)
b , X

(2)
b , · · · , X(n)

b

]

where X
(i)
b ∈ X is the bth output at the ith sensor. Given the state of nature,
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X
(i)
b are assumed to be (conditionally) independent across sensors and i.i.d. over

sampling instants with probability distributions F0(x) and F1(x) before and after

the change respectively. X1 corresponds to the first sample taken. In this work,

we do not consider the problem of optimal processing of the sensor measurements

to yield the sensor outputs, e.g., optimal quantizers (see [Veeravalli, 2001]).

• The vector of network delays of the batch b is denoted by

Db =
[
D

(1)
b , D

(2)
b , · · · , D(n)

b

]

where D
(i)
b ∈ {1, 2, 3, · · · } is the network delay in slots, of the ith component of

the bth batch (sampled at tb = b/r). Also, note that D
(i)
b > 1, as it requires one

time slot for the transmission of a packet to the fusion centre after a successful

contention.

Each value to be sent to the fusion centre by a node is inserted into a packet which is

queued for transmission. It is then transmitted to the fusion centre by using a contention

based multiple access protocol. A node can directly transmit its observation to the

fusion centre or route it through other nodes in the system. Each packet takes a time

slot to transmit. The MAC protocol and the queues evolve over the same time slots.

The fusion centre makes a decision about the change depending on whether Network

Oblivious (NODM) processing or Network Aware (NADM) processing is employed at the

fusion centre.

• In the case of NODM processing, the decision sequence (also called as action

sequence), isAu, u > 0, withAu ∈ {stop and declare change(1), take another sample(0)},
where u is a time instant at which a complete batch of n samples corresponding to

a sampling instant is received by the fusion centre.

• In the case of NADM processing, the decision sequence is Ak, k > 0, with Ak ∈
{stop and declare change(1), take another sample(0)}, i.e., a decision about the

change is taken at the beginning of every slot.
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Figure 4.4: Change time and the detection instants with and without network delay are
shown. The coarse sampling delay is given by tK − T where tK is the first sampling
instant after change, and the network delay is given by UK̃ − tK̃ .

4.3 Network Oblivious Decision Making (NODM)

In this section, we review the optimal NODM change detection problem (see [Premkumar et al.],

[Prasanthi and Kumar, 2006]). From Figure 4.1, we note that although all the components

of a batch b are generated at tb = b/r, they reach the fusion center at times tb+D
(i)
b , i =

1, 2, · · · , n. In NODM processing, the samples, which are successfully transmitted, are

queued in a sequencing buffer as they arrive (see Figure 4.5) and the sequencer releases

a (complete) batch to the decision maker, as soon as all the components of a batch

arrive. The decision maker makes a decision about the change at the time instants

when a (complete) batch arrives at the fusion center. In the Network Oblivious (NODM)

processing, the decision maker is oblivious to the network and processes the batch as

though it has just been generated (i.e., as if there is no network, hence the name Network

Oblivious Decision Making). We further define (see Figure 4.4)

• Ub, (b > 1): the random instant at which the fusion center receives the complete

batch Xb

• K̃ ∈ {0, 1, . . . }: the batch index at which the decision takes place, if there was no

network delay. K̃ = 0 means that the decision 1 (stop and declare change) is taken

before any batch is generated

• T̃ = tK̃ : the random time (a sampling instant) at which the fusion center stops

and declares change, if there was no network delay
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Figure 4.5: A sensor network model of Figure 4.2 with one hop communication between
the sensor nodes and the fusion center. The random access network along with the
sequencer is a fork–join queueing model.

• Ũ = UK̃ : the random time slot at which the fusion center stops and declares

change, in the presence of network delay

• Db = Ub − tb: Sojourn time of the bth batch, i.e., the time taken for all the

samples of the bth batch to reach the fusion center. Note that Db is given by

max{D(i)
b : i = 1, 2, · · · , n}. Thus, the delay of the batch K̃ at which the detector

declares a change is UK̃ − tK̃ = Ũ − T̃

We now define the following detection metrics.

Definition 4.1 Mean Detection Delay is defined as the expected number of slots

between the change point T and the stopping time instant τ , i.e., Mean Detection Delay

= E
[
(τ − T )+

]
.

Definition 4.2 Mean Decision Delay is defined as the expected number of slots

between the change point T and the stopping time instant T̃ in the (presence of coarse

sampling delay and in the) absence of network delay, i.e., Mean Decision Delay =

E
[(

T̃ − T
)
1{T̃>T}

]
.

With the above model and assumptions, the NODM problem is posed as follows.

Minimize the mean detection delay with a bound on the probability of false alarm, the

decision epochs being the time instants when a complete batch of n components corresponding

to a sampling instant is received by the fusion center. In Section 4.5, we pose the problem
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of making a decision at every slot based on the samples as they arrive at the fusion

center. The optimum NODM change detection problem is motivated by the approach

in [Veeravalli, 2001]. For a given sampling rate r, the problem is defined as

minimise E
[
(Ũ − T )1{T̃>T}

]
(4.2)

subject to P
{
T̃ < T

}
6 α

where α is the constraint on the false alarm probability.

T
~

U
~

T

Figure 4.6: Illustration of an event of false alarm with T̃ < T , but Ũ > T

Remark 4.1 Note that if α > 1− ρ, then the decision making procedure can be stopped

and an alarm can be raised even before the first observation. Thus, one can assume that

α < 1− ρ.

Remark 4.2 Note that here P
{
T̃ < T

}
is considered as the probability of false alarm

and not P
{
Ũ < T

}
, i.e., a case as shown in Figure 4.6 is considered a false alarm.

This can be understood as follows: when the decision unit detects a change at slot Ũ , the

measurements that triggered this inference would be carrying the “time stamp” T̃ , and

hence, one can infer that the change actually occurred at or before T̃ . Thus if T̃ < T , it

is an error.

The problem defined in Eqn. 4.2 can be written as

min
Πα

E
[
(Ũ − T )1{T̃>T}

]
(4.3)

where Πα is the set of detection policies for which P
{
T̃ < T

}
6 α.
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Theorem 4.1 If the sampling is periodic at rate r and the batch sojourn time process

Db, b > 1, is stationary with mean d(r), then

min
Πα

E
[
(Ũ − T )1{T̃>T}

]
= (d(r) + l(r))(1− α)− ρ · l(r) + 1

r
min
Πα

E
[
K̃ −K

]+

where l(r) is the delay due to (coarse) sampling.

(see [Premkumar et al.], [Prasanthi and Kumar, 2006] for the proof of Theorem 4.1)

Remark 4.3 For example in Figure 4.4, the delay due to coarse sampling is t2 − T ,

K̃ −K = 3 − 2 = 1, and the network delay is U3 − t3. The stationarity assumption on

Db, b > 1, is justifiable in a network in which measurements are continuously made, but

the detection process is started only at certain times, as needed.

Proof: The following is a sketch of the proof (the details are in [Premkumar et al.]):

min
Πα

E
[
(Ũ − T )1{T̃>T}

]
= min

Πα

{
E
[
(Ũ − T̃ )1{T̃>T}

]
+ E
[
T̃ − T

]+}

= min
Πα

{
E[D]

(
1− P

{
T̃ < T

})
+ E

[
T̃ − T

]+}

where the following fact is used; under periodic sampling, the queueing system evolution

and the evolution of the statistical decision problem are independent, i.e., K̃ is independent

of {D1, D2, . . .} and E[D] is the mean stationary queueing delay (of a batch). By writing

E[D] = d(r) and using the fact that the problem minΠα
E
[
T̃ − T

]+
is solved by a policy

π∗
α ∈ Πα with P

{
T̃ < T

}
= α, the problem becomes

d(r)(1− α) + min
Πα

E
[
T̃ − T

]+
= (d(r) + l(r))(1− α)− ρ · l(r) + 1

r
min
Πα

E
[
K̃ −K

]+

where l(r) is the delay due to sampling. Notice that minΠα
E
[
K̃ −K

]+
is the basic

change detection problem at the sampling instants.

Remark 4.4 It is important to note that the independence between K̃ and {D1, D2, . . .}
arises from periodic sampling. Actually this is conditional independence given the rate
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Fusion
Centre

Figure 4.7: A sensor network with a star topology with the fusion center at the hub.
The sensor nodes use a random access MAC to send their packets to the fusion centre.

of the periodic sampling process. If, in general, one considers a model in which the

sampling is at random times (e.g., the sampling process randomly alternates between

periodic sampling at two different rates or if adaptive sampling is used) then one can

view it as a time varying sampling rate and the asserted independence will not hold.

Thus, the problem defined in Eqn. 4.2 effectively decouples into the sum of the

optimal delay in the original optimal detection problem, i.e., 1
r
minΠα

E
[
K̃ −K

]+
as

in [Veeravalli, 2001], a part that captures the network delay, i.e., d(r)(1−α), and a part

that captures the sampling delay, i.e., l(r)(1− α)− ρl(r).

4.4 Network Delay Model

From [Prasanthi and Kumar, 2006], we understand that in NODM processing, the optimal

decision device and the queueing system are decoupled. Thus, one can employ an

optimal sequential change detection procedure (see [Shiryaev, 1978]) for any random

access network (in between the sensor nodes and the fusion centre). Also, NODM is

oblivious to the random access network (in between the sensor nodes and the fusion

centre) and processes a received batch as though it has just been generated. In the case of

NADM (which we describe in Section 4.5), the decision maker processes samples, keeping

network–delays into account, thus requiring the knowledge of the network dynamics. In

this section, we provide a simple model for the random access network, that facilitates
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the analysis and optimization of NADM.

In order to understand issues, tradeoffs, and to compare control algorithms, we have

considered the following network model. n sensors form a star topology1 (see Figure 4.7)

ad hoc wireless sensor network with the fusion centre as the hub. They synchronously

sample their environment at the rate of r samples per slot periodically. At sampling

instant tb = b/r, sensor node i generates a packet containing the sample value X
(i)
b (or

some quantized version of it). This packet is then queued first-in-first-out in the buffer

behind the radio link. It is as if each sample is a fork operation ([Baccelli and Makowski, 1990])

that puts a packet into each sensor queue (see Figure 4.5).

The sensor nodes contend for access to the radio channel, and transmit packets when

they succeed. The service is modeled as follows. As long as there are packets in any of

the queues, successes are assumed to occur at the constant rate of σ (0 < σ < 1) per slot,

with the intervals between the successes being i.i.d., geometrically distributed random

variables, with mean 1/σ. If, at the time a success occurs, there are n nodes contending

(i.e., n queues are nonempty) then the success is ascribed to any one of the n nodes with

equal probability.

The n packets corresponding to a sample arrive at random times at the fusion centre.

If the fusion centre needs to accumulate all the n components of each sample then it

must wait for that component of every sample that is the last to depart its mote. This

is a join operation (see Figure 4.5).

It is easily recognized that our service model is the discrete time equivalent of

generalized processor sharing (GPS – see, for example, [Kumar et al., 2004]). The queueing

model, in the case of Network Oblivious Decision Making (NODM) is called the FJQ-GPS

(fork–join queue, see [Baccelli and Makowski, 1990]).

In IEEE 802.11 networks and IEEE 802.15.4 networks, if appropriate parameters are

used, then the adaptive backoff mechanism can achieve a throughput that is roughly

constant over a wide range of n, the number of contending nodes. This is well known

for the CSMA/CA implementation in IEEE 802.11 wireless LANs; see, for example,

1Note that Theorem 1 is more general and does not assume a star topology.
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Figure 4.8: The aggregate saturation throughput η of an IEEE 802.11 network plotted
against the number of nodes in the network, for various physical layer bit rates: 2.2 Mbps,
5.5 Mbps, and 11 Mbps. The two curves in each plot correspond to an analysis and an
NS–2 simulation (reprinted from [Singh et al., 2008]).
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Figure 4.9: The aggregate saturation throughput η of an IEEE 802.15.4 star topology
network plotted against the number of nodes in the network. Throughput obtained with
default backoff parameters is shown on the left and that obtained with backoff multiplier
= 3, is shown on the right. The two curves in each plot correspond to an analysis and
an NS–2 simulation (reprinted from [Singh et al., 2008]).

Figure 4.8 [Kumar et al., 2008]. For each physical layer rate, the network service rate

remains fairly constant with increasing number of nodes. From Figure 4.9 (taken from

[Singh et al., 2008]) it can be seen that with the default backoff parameters, the saturation

throughput of a star topology IEEE 802.15.4 network decreases with the number of nodes

n, but with the backoff multiplier = 3, the throughput remains almost constant from

n = 10 to n = 50 [Singh et al., 2008]; thus, in the latter case our GPS model can be

applicable.
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We provide the following result in [Prasanthi and Kumar, 2006], for the sake of completeness.

Theorem 4.2 The stationary delay D of a FJQ–GPS queueing system is a proper

random variable with finite mean if and only if nr < σ.

Thus, for the FJQ–GPS queueing system to be stable, the sampling rate r is chosen such

that r < σ
n
.

4.5 Network Aware Decision Making (NADM)

In Section 4.3, we reviewed the problem of NODM quickest change detection over a

random access network, and showed that (when the decision instants are Uk, as shown

in Figure 4.4) the optimal decision maker is independent of the random access network,

under periodic sampling. Hence, the Shiryaev procedure, which is shown to be delay

optimal in the classical change–detection problem (see [Shiryaev, 1978]), can be employed

in the decision device independently of the random access network. It is to be noted that

the decision maker in the NODM case, waits for a complete batch of n samples to arrive,

to make a decision about the change. Thus, the mean detection delay of the NODM has

a network–delay component corresponding to a batch of n samples. In this section, we

provide a mechanism of fusion at the decision device called the Network Aware Decision

Making (NADM), in which we do not wait for an entire batch to arrive, but process the

samples as soon as they arrive, but in a time–causal manner.

We now describe the processing in NADM. The principle that the fusion centre follows

is to process all the samples of a batch as they arrive and finish processing all the

samples of the batch before moving on to the next batch. Meanwhile, any samples

belonging to later batches are held in the sequencer buffer. Thus, whenever a node

(successfully) transmits a sample across the random access network, it is delivered to the

decision maker if the decision maker has received all the samples from all the batches

generated earlier. Otherwise, the sample is an out–of–sequence sample, and is queued
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in the sequencer buffer. It follows that, whenever the (successfully) transmitted sample

is the last component of the batch that the decision maker is working on, then the head

of line (HOL) samples, if any, in the queues of the sequencer buffer are also delivered

to the decision maker. This is because, these HOL samples belong to the next batch

that the decision maker should process. The decision maker makes a decision about the

change at the beginning of every time slot, irrespective of whether it receives a sample

or not. We will see that in NADM, whenever the decision maker receives a sample, it

needs to take into account the network–delay of the sample when updating the decision

statistic based on the newly arrived sample. The network–delay is a part of the state

of the queueing system which is available to the decision maker. Thus, the state of the

queueing system also plays a role in decision making.

In Section 4.5.1, we define the state of the queueing system. In Section 4.5.2, we define

the dynamical system whose change of state (from 0 to 1) is the subject of interest to

us. We define the state of the dynamical system, at time k, as a tuple that contains the

queueing state and a vector of states of nature from time k −∆k to time k. We explain

the evolution of the state of the dynamical system in Section 4.5.3. In Section 4.5.4,

we explain the model of the sensor observations received by the decision maker. In

Section 4.5.5, we formulate the NADM change detection problem and find a sufficient

statistic for the observations in Section 4.5.6. In Section 4.5.7, we provide the optimal

decision rule for the NADM change detection problem.

4.5.1 Notation and State of the Queueing System

Recall the notation introduced in Section 4.2. Time progresses in slots, indexed by

k = 0, 1, 2 · · · ; the beginning of slot k is the time instant k. Recall that the nodes take

samples at the instants 1/r, 2/r, 3/r, · · · . We define the state of the queueing system

here. Note that the queueing system evolves over slots.

• λk ∈ {1, 2, · · · , 1/r} denotes the number of time slots to go for the next sampling
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Figure 4.10: At time k, the decision maker is processing samples from (or is expecting
the first sample from) batch Bk, which was sampled at tBk

. Also, at time k, λk is the
number of slots to go for the next sampling instant and ∆k is the number of slots back
at which batch Bk is generated.
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Figure 4.11: Illustration of a scenario in which ∆k = 0. If the last component from
batch Bk−1 is received at k, and if there is no sampling instant between tBk−1

and k,
then ∆k = 0. Also, note in this case that ∆k = ∆k+1 = · · · = ∆tBk

= 0. In this scenario,
at time instants k, k+1, · · · , tBk

, all the queues at the sensor nodes and at the sequencer
are empty, and at time instant tBk

+, all sensor node queues have one packet which is
generated at tBk

.

instant, at the beginning of time slot k (see Figure 4.10). Thus,

λk :=
1

r
−
(
k mod

1

r

)
. (4.4)

Note that at the sampling instants tb, λtb =
1
r
. Also, λ0 =

1
r
, λ1 =

1
r
−1, · · · , λ1/r−1 =

1, λ1/r = 1/r, etc.

• Bk ∈ {1, 2, 3, · · · } denotes the index of the batch that is being processed by the

decision maker at the beginning of time slot k, or if the decision maker is in between

processing two batches then Bk is the index of the batch that it is expecting to

receive a sample from. Note B0 = B1 = · · · = B1/r = 1. Also, note that the batch

Bk is generated at time instant Bk/r and the earliest any sample from it can be

received at the fusion centre is Bk/r + 1.
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Departure w.p. if

L
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k

λk+1 = 1/r

σ
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(i)
k > 0

L
(i)
k+1 = L

(i)
k − 1{Mk=i} + 1{λk+1=1/r}

Figure 4.12: The evolution of L
(i)
k from time slot k to time slot k+1. If during time slot

k, node i transmits (successfully) a packet to the fusion centre (i.e., Mk = i), then that
packet is flushed out of its queue at the end of time slot k. Also, a new sample is generated
(every 1/r slots) exactly at the beginning of a time slot. Thus, L

(i)
k+1 just after the

beginning of time slot k+1 (i.e., at (k+1)+) is given by L
(i)
k+1 = L

(i)
k −1{Mk=i}+1{λk+1=1/r}.

• ∆k ∈ {0, 1, 2, · · · } denotes the delay in the number of time slots between the time

instants k and Bk/r (see Figure 4.10).

∆k := max

{
k − Bk

r
, 0

}
. (4.5)

Note that the batches of samples taken after Bk/r and up to (including) k are

queued either in the sensor node queues or in the sequencer buffer in the fusion

centre. If at time k, the fusion centre receives a sample which is the last sample

from batch Bk−1, then Bk = Bk−1 + 1. If the sampling instant of the Bkth batch

is later than k (i.e., Bk/r > k), then ∆k = 0 (and will remain 0 up to time Bk/r

at which instant, a new batch is generated, see Figure 4.11). This corresponds

to the case, when all the samples generated up to time slot k, have already been

processed by the decision maker. In particular, ∆0 = ∆1 = · · · = ∆ 1
r
−1 = 0.

• L
(i)
k ∈ {0, 1, 2, · · · } denotes the queue length of the ith sensor node just after the

beginning of time slot k (i.e., at time instant k+). The vector of queue lengths is

Lk = [L
(1)
k , L

(2)
k , · · · , L(n)

k ]. Let Nk :=
∑n

i=1 1{L
(i)
k

>0}
be the number of non–empty

queues at the sensor nodes, just after the beginning of time slot k. i.e., the number

of sensor nodes that contend for slot k is Nk. Hence, using the network model we

have provided in Section 4.4, the evolution of L
(i)
k (see Figure 4.12) is given by the
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following:

L
(i)
0 = 0

L
(i)
k+1 =





L
(i)
k + 1{λk+1=1/r} w.p. 1 if Nk = 0,

L
(i)
k + 1{λk+1=1/r} w.p. (1− σ) if Nk > 0,

max{L(i)
k − 1, 0}+ 1{λk+1=1/r} w.p. σ

Nk
if Nk > 0.

Note that when all the samples generated up to time slot k have already been

processed by the decision maker and k is not a sampling instant, i.e., ∆k = 0 and

λk 6= 1/r, then Lk = 0 (as there are no outstanding samples in the system). For

e.g., L1 = L2 = · · · = L1/r−1 = 0. Also, note that just after sampling instant tb,

L
(i)
tb

> 1.

• Mk ∈ {0, 1, 2, · · · , n} denotes the index of the node that successfully transmits in

slot k. Mk = 0 means that there is no successful transmission in slot k. Thus, from

the network model we have provided in Section 4.4, we note that

Mk =





0 w.p. 1 if Nk = 0

0 w.p. (1− σ) if Nk > 0

j w.p. σ
Nk

if L
(j)
k > 0, j = 1, 2, · · · , n

• W
(i)
k ∈ {0, 1, 2, · · · } denotes the queue length of the ith sequencer buffer at time k.

The vector of queue lengths is given by Wk = [W
(1)
k ,W

(2)
k , · · · ,W (n)

k ]. Note that

Wk = 0 if ∆k = 0, i.e., the sequencer buffer is empty if there are no outstanding

samples in the system. In particular, W0 = W1 = · · · = W 1
r
= 0. The evolution

of W
(i)
k (see Figure 4.13) is given in the Appendix.

• R
(i)
k ∈ {0, 1} denotes whether the sample X

(i)
Bk

(i.e., the sample from sensor node

i in the batch currently being processed) has been received and processed by the

decision maker at time k. R
(i)
k = 0 means that the sample X

(i)
Bk

has not yet been

received by the decision maker and R
(i)
k = 1 means that the sample X

(i)
Bk

has been
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A new sample is received by the fusion center here if

 w.p. if
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Mk = j L
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k > 0
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Figure 4.13: The evolution of W
(i)
k from time slot k to time slot k + 1. If a sample from

node i is transmitted (successfully) during time slot k (i.e., Mk = i), then it is received
by the fusion centre at the end of time slot k (i.e. at (k + 1)−). If this sample is from
batch Bk, it is passed on to the decision maker. Otherwise, it is queued in the sequencer
buffer, in which case W

(i)
k+1 = W

(i)
k + 1. On the other hand, if a sample from some other

node j is transmitted (successfully) during time slot k (i.e., Mk = j 6= i), and if this
sample is the last component to be received from batch Bk, then the HOL packet, if any,
is also delivered to the decision maker. Thus, in this case, W

(i)
k+1 = max{W (i)

k − 1, 0}.

received and processed by the decision maker. The vector of R
(i)
k s is given by

Rk = [R
(1)
k , R

(2)
k , · · · , R(n)

k ]. Note that W
(i)
k = 0 if R

(i)
k = 0, i.e., the ith sequencer

buffer is empty if the sample expected by the decision maker has not yet been

transmitted. Also note that when ∆k = 0, Rk = 0, as the samples from the

current batch Bk have yet to be generated or have just been generated.

We now relate the queue lengths L
(i)
k and W

(i)
k . Note that at the beginning of time

slot k,
⌊

k
1/r

⌋
samples have been generated so far, at sensor node i. Of these, Bk−1+R

(i)
k

samples have been processed by the decision maker and the remaining samples are in

the sensor and sequencer queues. Thus, we have

L
(i)
k +W

(i)
k =

⌊
k

1/r

⌋
− (Bk − 1)− R

(i)
k (4.6)

=

⌊
k −Bk/r + 1/r

1/r

⌋
− R

(i)
k

=





⌊
∆k

1/r

⌋
+ 1− R

(i)
k if k > Bk/r

1−R
(i)
k if k = Bk/r

−R
(i)
k if k < Bk/r.
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Note that if k 6 Bk/r, ∆k = 0. Thus, we write the above Eqn. as,

L
(i)
k +W

(i)
k =





⌊
∆k

1/r

⌋
+ 1−R

(i)
k if ∆k > 0

1 if ∆k = 0, λk = 1/r

0 if ∆k = 0, λk 6= 1/r.

(4.7)

Note that in the above Eqn. ∆k = 0, λk = 1/r (or equivalently k = Bk/r), corresponds

to the case when a sample from batch Bk is just taken and all the samples from all

previous batches have been processed. Thus, in this case L
(i)
k = 1 (as W

(i)
k = 0). In the

case of ∆k = 0, λk 6= 1/r (or equivalently k < Bk/r), all the samples from all previous

batches have been processed and a new sample from batch Bk is not taken yet. Thus,

in this case L
(i)
k = 0 (and W

(i)
k = 0). Hence, given Qk = [λk, Bk,∆k,Wk,Rk], the queue

lengths L
(i)
k s can be computed. Define the functions φL(i)(Qk) and φN(Qk) as

φL(i)(Qk) :=





⌊
∆k

1/r

⌋
+ 1−R

(i)
k −W

(i)
k if ∆k > 0

1 if ∆k = 0, λk = 1/r

0 if ∆k = 0, λk 6= 1/r

(4.8)

φN(Qk) :=
n∑

i=1

1{φ
L(i) (Qk)>0}. (4.9)

φL(i)(Qk) computes the queue length L
(i)
k and φN(Qk) computes Nk. Thus, the state of

the queueing system at time k, can be expressed as Qk = [λk, Bk,∆k,Wk,Rk]. Note

that the decision maker can observe the state Qk perfectly. The evolution of the queueing

system is explained in the next subsection.

4.5.2 Evolution of the Queueing System

The evolution of the queueing system from time k to time k + 1 depends only on the

random variable Mk, the success/no–success of contention on the random access channel.
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Thus, the state of the queueing system at time k + 1 is given by

Qk+1 = φQ(Qk,Mk) (4.10)

:= [φλ(Qk,Mk), φB(Qk,Mk), φ∆(Qk,Mk), φW(Qk,Mk), φR(Qk,Mk)] .(4.11)

where we see that Mk appears as “state noise.” The functions φλ(Qk,Mk), φB(Qk,Mk),

φ∆(Qk,Mk), φW(Qk,Mk), and φR(Qk,Mk) are described in detail in the Appendix.

In the next subsection, we provide a model of the dynamical system the state of

which also has the state of nature that changes from 0 to 1 at a random time T .

4.5.3 System State Evolution Model

Let Θk ∈ {0, 1}, k > 0, be the state of nature at the beginning of time slot k. Recall

that T is the change point, i.e., for k < T , Θk = 0 and for k > T , Θk = 1, and that the

distribution of T is given in Eqn. 4.1. The state Θk is observed only through the sensor

measurements, but these are delayed. We will formulate the optimal NADM change

detection problem as a partially observable Markov decision process (POMDP) with the

delayed observations. The approach and the terminology used here is in accordance with

the stochastic control framework in [Bertsekas, 2000a]. At time k, a sample, if any, that

the decision maker receives is generated at time Bk/r < k (i.e., samples arrive at the

decision maker with a network–delay of ∆k = k− Bk

r
slots). To make an inference about

Θk from the sensor measurements, we must consider the vector of states of nature that

corresponds to the time instants k−∆k, k−∆k+1, · · · , k. We define the vector of states

at time k, Θk := [Θk−∆k
,Θk−∆k+1, · · · ,Θk]. Note that the length of the vector depends

on the network–delay ∆k. When ∆k > 0, Θk = [ΘBk
r

,ΘBk
r

+1
, · · · ,Θk], and when ∆k = 0,

Θk is just [Θk].
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Consider the discrete–time system, which at the beginning of time slot k is described

by the state

Γk = [Qk,Θk],

where we recall that

Qk =

[
λk, Bk,∆k,Wk,Rk

]
,

Θk = [Θk−∆k
,Θk−∆k+1, · · · ,Θk].

Note that Γ0 =
[[

1
r
, 1, 0, 0

]
,Θ0

]
. At each time slot k, we have the following set of

controls {0, 1} where 0 represents “take another sample”, and 1 represents “stop and

declare change”. Thus, at time slot k, when the control chosen is 1, the state Γk+1 is

given by a terminal absorbing state t; when the control chosen is 0, the state evolution

is given by Γk+1 = [Qk+1,Θk+1], where

Qk+1 = φQ(Qk,Mk),

Θk+1 =





[
Θk + 1{T=k+1}

]
, if ∆k+1 = 0

[
Θk−∆k

,Θk−∆k+1, · · · ,Θk,Θk + 1{T=k+1}

]
, if ∆k+1 = ∆k + 1[

Θk−∆k+
1
r
,Θk−∆k+

1
r
+1, · · · ,Θk,Θk + 1{T=k+1}

]
, if ∆k+1 = ∆k + 1− 1

r
.

=: φΘ

(
Θk,Qk,Mk, 1{T=k+1}

)
(4.12)

where it is easy to observe that Θk + 1{T=k+1} = Θk+1. When ∆k+1 = ∆k +1, the batch

Bk is still in service, and hence, in addition to the current state Θk+1 = Θk + 1{T=k+1},

we need to keep the states Θk−∆k
,Θk−∆k+1, · · · ,Θk. Also, when ∆k+1 = ∆k + 1 − 1

r
,

then the batch index is incremented, and hence, the vector of states that determines the

distribution of the observations sampled at or after Bk+1/r and before k + 1 is given by[
Θk−∆k+

1
r
,Θk−∆k+

1
r
+1, · · · ,Θk , Θk + 1{T=k+1}

]
.

Define Ok := 1{T=k+1}, and define Nk := [Mk, Ok] be the state–noise during time

slot k. The distribution of state–noise Nk given the state of the discrete–time system
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Γk is given by P
{
Mk = m,Ok = o

Γk = [q, θ]
}
and is the product of the distribution

functions, P
{
Mk = m

Γk = [q, θ]
}

and P
{
Ok = o

Γk = [q, θ]
}
. These distribution

functions are provided in the Appendix.

The problem is to detect the change in the state Θk as early as possible by sequentially

observing the samples at the decision maker. At each time k, in the dynamical system,

the queueing state Qk can be observed, but the vector of the states of nature Θk can

not be observed directly and can be observed only through the sensor measurements Yk

that the decision maker receives.

4.5.4 Model of Sensor Observation received by Decision Maker

Let Yk+1 ∈ {∅} ∪ R1 ∪ R2 ∪ · · · ∪ Rn denote the vector of samples received, if any, by

the decision maker at the beginning of slot k + 1 (i.e., the decision maker can receive

nothing or a vector of N +1 samples where N ranges from 0 to n−1). At the beginning

of time slot k + 1, the following possibilities arise:

• No successful transmission: This corresponds to the case i) when all the queues

are empty at the sensor nodes (Nk = 0), or ii) when some queues are non–empty

at the sensor nodes (Nk > 0), but the contention fails. In either case, Mk = 0 and

the decision maker does not receive any sample, i.e., Yk+1 = ∅.

• Successful transmission of node j’s sample from a later batch: This

corresponds to the case, when the decision maker has already received the jth

component of the current batch Bk (i.e., R
(j)
k = 1) and that it has not received

some sample, say i 6= j, from the batch Bk (i.e., R
(i)
k = 0, for some i). The

received sample (is an out–of–sequence sample and) is queued in the sequencer

buffer (W
(j)
k+1 = W

(j)
k + 1). Thus, in this case, Mk = j and the decision maker does

not receive any sample, i.e., Yk+1 = ∅.

• Successful transmission of node j’s current sample which is not the

last sample from the batch Bk to be received by the decision maker:

This corresponds to the case when the decision maker has not received the jth
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component of the batch Bk before time slot k (R
(j)
k = 0), and the fusion centre is

yet to receive some other samples of batch Bk (i.e.,
∑n

i=1R
(i)
k < n − 1). Thus, in

this case, Mk = j and the decision maker receives the sample Yk+1 = X
(j)
Bk
.

• Successful transmission of node j’s current sample which is the last

sample from the batch Bk to be received by the decision maker: This

corresponds to the case when the decision maker has not received the jth component

of the batch Bk before time slot k (R
(j)
k = 0). Also, this sample is the last

component of batch Bk, that is received by the fusion centre (i.e.,
∑n

i=1R
(i)
k = n−1).

In this case (along with the received sample), the queues of the sequencer buffer

deliver the head of line (HOL) samples (which correspond to the batch index

Bk + 1), if any, to the decision maker, and the queues are decremented by one

(W
(i)
k+1 = max{W (i)

k − 1, 0}). Thus, in this case, Mk = j and the decision maker

receives the vector of samples Yk+1 =
[
X

(j)
Bk
, X

(i′1)
Bk+1, X

(i′2)
Bk+1, · · · , X

(i′
N
)

Bk+1

]
where

W
(i)
k > 0 for i ∈ {i′1, i′2, · · · i′N}, and W

(i)
k = 0 for i /∈ {i′1, i′2, · · · i′N}.

4.5.5 The NADM Change Detection Problem

We now formulate the NADM change–detection problem in which the observations from

the sensor nodes are sent over a random access network to the fusion center and the

fusion center processes the samples in the NADM mode.

In Section 4.5.3, we defined the state Γk = [Qk,Θk] on which we formulate the

NADM change detection problem as a POMDP. Recall that at the beginning of slot k,

the decision maker receives a vector of sensor measurements Yk and observes the state

Qk of the queueing system. Thus, at time k, Zk = [Qk,Yk] is the observation of the

decision maker about the state of the dynamical system Γk.

Let Ak ∈ {0, 1} be the control (or action) chosen by the decision maker after having

observed Zk at k. Recall that 0 represents “take another sample” and 1 represents the

action “stop and declare change”. Let Ik =
[
Z[0:k], A[0:k−1]

]
be the information vector that

is available to the decision maker, at the beginning of time slot k. Let τ be a stopping
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time with respect to the sequence of random variables I1, I2, · · · . Note that Ak = 0 for

k < τ and Ak = 1 for k > τ . We are interested in obtaining a stopping time τ that

minimises the mean detection delay subject to a constraint on the probability of false

alarm.

minimise E
[
(τ − T )+

]
(4.13)

subject to P {τ < T} 6 α

Note that in the case of NADM, at any time k, a decision about the change is made based

on the information Ik (which includes the batch index we are processing and the delays).

Thus, in the case of NADM, false alarm is defined as the event {τ < T} and, hence,

τ > T is not classified as a false alarm even if it is due to pre–change measurements only.

However, in the case of NODM, this is classified as a false alarm as the decision about

the change is based on the batches received until time k.

Let c be the cost per unit delay in detection. We are interested in obtaining a stopping

time τ ∗ that minimises the expected cost (Bayesian risk) given by

C(c, τ ∗) = min
τ

E
[
1{Θτ=0} + c · (τ − T )+

]

= min
τ

E

[
1{Θτ=0} + c ·

τ−1∑

k=0

1{Θk=1}

]

= min
τ

E

[
gτ (Γτ , Aτ ) +

τ−1∑

k=0

gk(Γk, Ak)

]

= min
µ

∞∑

k=0

E[gk(Γk, Ak)] (4.14)

where, as defined earlier, Γk = [Qk,Θk]. Let θ = [θδ, θδ−1, · · · , θ1, θ0]. We define the cost
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function gk(·, ·) for k 6 τ as

gk([q, θ], a) =





0, if θ0 = 0, a = 0

1, if θ0 = 0, a = 1

c, if θ0 = 1, a = 0

0, if θ0 = 1, a = 1

(4.15)

and for k > τ , gk(·, ·) := 0. Recall that Ak = 0 for k < τ and Ak = 1 for k > τ . Note

that Ak, the control at time slot k, depends only on Ik. Thus, every stopping time τ ,

corresponds to a policy µ = (µ0, µ1, · · · ) such that Ak = µk(Ik), with Ak = 0 for k < τ

and Ak = 1 for k > τ . Since Θk is observed only through Ik, we look at a sufficient

statistic for Ik in the next subsection.

4.5.6 Sufficient Statistic

In Section 4.5.2, we have illustrated the evolution of the queueing system Qk and we

have shown in different scenarios, the vector Yk received by the decision maker. Recall

from Section 4.5.2 that

Yk+1 =





∅, if Mk = 0,

∅, if Mk = j > 0, R
(j)
k = 1,

Yk+1,0, if Mk = j > 0, R
(j)
k = 0,

n∑
i=1

R
(i)
k < n− 1

[Yk+1,0, Yk+1,1, · · · , Yk+1,N ] , if Mk = j > 0, R
(j)
k = 0,

n∑
i=1

R
(i)
k = n− 1,

n∑
i=1

1
{W

(i)
k

>0}
= N.

Note that Yk+1,0 corresponds toX
(Mk)
Bk

. The last part of the above equation corresponds to

the last pending sample of the batch Bk arriving at the decision maker at time k+1, with

some samples from batch Bk + 1 (= Bk+1) also being released by the sequencer. In this

case, the state of nature at the sampling instant of the batch Bk+1 = Bk+1 is Θk−∆k+1/r.

Note that Θk−∆k+1/r is a component of the vector Θk as k−∆k +1/r = (Bk +1)/r < k.
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Thus, the distribution of Yk+1,0, Yk+1,1, · · · , Yk+1,N is given by

fYk+1,0
(·) =





f0(·), if Θk−∆k
= 0

f1(·), if Θk−∆k
= 1 and

fYk+1,i
(·) =





f0(·), if Θk−∆k+1/r = 0

f1(·), if Θk−∆k+1/r = 1
, i = 1, 2, · · · , N.

Thus, at time k+1, the current observation Yk+1 depends only on the previous state Γk,

previous action Ak, and the previous noise of the system Nk. Thus, a sufficient statistic

is
[
P
{
Γk = [q, θ]

Ik
}]

[q,θ]∈S
(see page 244, [Bertsekas, 2000a]) where S is the set of all

states of the dynamical system defined in Sec. 4.5.3. Let q = [λ, b, δ,w, r]. Note that

P
{
Γk = [q, θ]

Ik
}

= P
{
Γk = [q, θ]

Ik−1,Qk,Yk

}

= 1{Qk=q} · P
{
Θk = θ

Ik−1,Qk = q,Yk

}

= 1{Qk=q}

·P
{
[Θk−δ,Θk−δ+1, · · · ,Θk−1,Θk] = [θδ, θδ−1, · · · , θ1, θ0]

Ik−1,Qk = q,Yk

}

= 1{Qk=q} · P
{
Θk−δ = θδ

Ik−1,Qk = q,Yk

}

·
δ∏

j=1

P
{
Θk−δ+j = θδ−j

Θk−δ+j′ = θδ−j′, j
′ = 0, 1, · · · , j − 1, Ik−1,Qk = q,Yk

}

(4.16)

Observe that

P
{
Θk−δ+j = θδ−j

Θ[k−δ:k−δ+j−2],Θk−δ+j−1 = 0, Ik−1,Qk = q,Yk

}

=





1− p, if θδ−j = 0

p, if θδ−j = 1
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and

P
{
Θk−δ+j = θδ−j

Θ[k−δ:k−δ+j−2],Θk−δ+j−1 = 1, Ik−1,Qk = q,Yk

}

=





0, if θδ−j = 0

1, if θδ−j = 1.

This is because given Θk−δ, the events {Θk−δ+j = θδ−j}, {Ik−1,Qk = q,Yk} are conditionally
independent. Thus, Eqn. 4.16 can be written as

P
{
Γk = [q, θ]

Ik
}

=





1{Qk=q} · P
{
Θk−δ = 1

Ik−1,Qk = q,Yk

}
, if θ = 1

1{Qk=q} · P
{
Θk−δ = 0

Ik−1,Qk = q,Yk

}
· (1− p)δ−j−1p, if θ = [0, · · · , 0, 1︸︷︷︸

θj

, · · · , 1]

1{Qk=q} · P
{
Θk−δ = 0

Ik−1,Qk = q,Yk

}
· (1− p)δ, if θ = 0

(4.17)

Define Θ̃k := Θk−∆k
, and define

Ψk := P
{
Θ̃k = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

}

= P
{
Θk−δ = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

}

Πk := P
{
Θk = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

}

= P
{
T 6 k

Ik−1,Qk = [λ, b, δ,w, r],Yk

}
.

(4.18)

Thus, Eqn. 4.17 can be written as

P
{
Γk = [[λ, b, δ,w, r], θ]

Ik
}

=





1{Qk=[λ,b,δ,w,r]} ·Ψk, if θ = 1

1{Qk=[λ,b,δ,w,r]} · (1−Ψk) · (1− p)δ−j−1p, if θ = [0, · · · , 0, 1︸︷︷︸
θj

, · · · , 1]

1{Qk=[λ,b,δ,w,r]} · (1−Ψk) · (1− p)δ, if θ = 0

(4.19)
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We now find a relation between Πk and Ψk in the following Lemma.

Lemma 4.1 The relation between the conditional probability distributions Πk and Ψk is

given by

Πk = Ψk + (1−Ψk)
(
1− (1− p)δ

)
(4.20)

From Eqn. 4.19 and Lemma 4.1, it is clear that a sufficient statistic for Ik is νk =

[Qk,Πk]. Also, we show in the Appendix that νk can be computed recursively, i.e., when

Ak = 0, νk+1 = [Qk+1,Πk+1] = [Qk+1, φΠ(νk,Zk+1)], and when Ak = 1, νk+1 = t, a

terminal state. Thus, νk can be thought of as entering into a terminating (absorbing)

state t at τ (i.e., νk = [Qk,Πk] for k < τ and νk = t for k > τ). Since νk is sufficient, for

every policy µk there corresponds a policy µ̃k such that µk(Ik) = µ̃k(νk) (see page 244,

[Bertsekas, 2000a]).

4.5.7 Optimal Stopping Time τ

Let Q be the set of all possible states of the queueing system, Qk. Thus the state

space of the sufficient statistic is C = (Q× [0, 1]) ∪ {t}. Recall that the action space is

A = {0, 1}. Define the one–stage cost function g̃ : C ×A → R+ as follows. Let ν ∈ C be

a state of the system and let a ∈ A be a control. Then,

g̃(ν, a) =





λf(1− π), if ν = [q, π], a = 1

π, if ν = [q, π], a = 0

0, if ν = t.

Note from Eqn. 4.15 that

E[g(Θk, Ak)] = E[gk(Θk, µk(Ik))]

= E

[
E

[
gk(Θk, µk(Ik))

Ik
]]

= E[g̃(νk, µ̃k(νk))] .
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Since, {νk} is a controlled Markov process, and the one–stage cost function g̃(·, ·), the
transition probability kernel for Ak = 1 and for Ak = 0 (i.e., P

{
Zk+1

νk
}
), do not

depend on time k, and the optimization problem defined in Eqn. 4.14 is over infinite

horizon, it is sufficient to look for an optimal policy in the space of stationary Markov

policies (see page 83, [Bertsekas, 2000b]). Thus, the optimization problem defined in

Eqn. 4.14 can be written as

C(c, τ ∗) = min
µ̃

∞∑

k=0

E
[
g̃
(
νk, µ̃k(νk)

)]

=
∞∑

k=0

E
[
g̃
(
νk, µ̃

∗(νk)
)]

. (4.21)

Thus, the optimal total cost is given by

J∗([q0, π0]) =

∞∑

k=0

E

[
g̃
(
νk, µ̃

∗(νk)
)ν0 = [q0, π0]

]
. (4.22)

The optimal cost function satisfies the following Bellman’s equation

J∗([q, π]) := min

{
1− π, cπ + E

[
J∗ (Qk+1, φΠ(νk,Zk+1))

νk = [q, π]

]}
.

(4.23)

where the function φΠ(νk,Zk+1) is provided in the Appendix.

Remark 4.1 The optimal stationary Markov policy (i.e., the optimum stopping rule τ)

in general depends on Q. Hence, the decision delay and the queueing delay are coupled,

unlike in the NODM case.

We characterize the optimal policy in the following theorem.

Theorem 4.3 The optimal stopping rule τ ∗ is a network–state dependent threshold rule

on the a posteriori probability Πk, i.e., there exists thresholds γ(q) such that

τ = inf{k > 0 : Πk > γ(Qk)} (4.24)
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In general, the thresholds γ(Qk)s (i.e., optimum policy) can be numerically obtained

by solving Eqn. 4.23 using value iteration method (see pp. 88–90, [Bertsekas, 2000b]).

However, computing the optimal policy for the NADM procedure is hard as the state

space is huge even for moderate values of n. Hence, we resort to a suboptimal policy

based on the following threshold rule, which is motivated by the structure of the optimal

policy.

τ = inf{k > 0 : Πk > γ} (4.25)

where γ is chosen such that P {τ < T} = α is met.

Thus, we have formulated a sequential change detection problem when the sensor

observations are sent to the decision maker over a random access network, and the

fusion centre processes the samples in the NADM mode. The information for decision

making now needs to include the network state Qk (in addition to the samples received

by the decision maker); we have shown that [Qk,Πk] is sufficient for the information

history Ik. Also, we have provided the structure for the optimal policy. Since, obtaining

the optimal policy is computationally hard, we gave a simple threshold based policy,

which is motivated by the structure of the optimal policy.

Remark: The communication channel between the sensor nodes and the fusion centre

can be noisy, and there can be noise at the fusion centre as well. The effect of the channel

impairments and the noise at the fusion centre can be seen in the form of dropping of

packets that carry the samples from the sensors. If at time k, the fusion centre has not

yet received a sample from a sensor i of bth batch, but receives a sample (from the sensor

i) of a later batch b′ (where b′ > b), then it means that the packets of sensor i that carried

the samples from batches b, b+1, · · · , b′−1 are dropped. We will still get a POMDP with

a large complexity. However, if the probability of packet drop can be neglected (since

the number of retransmissions is quite large, the probability of packet drop is very small

even for fairly large packet error rates (even 10% to 20%)), the analysis in this Chapter

directly applies.



88 Chapter 4. Quickest Event Detection on Ad Hoc Wireless Networks

4.6 Numerical Results

Minimising the mean detection delay not only requires an optimal decision rule at the

fusion centre but also involves choosing the optimal values of the sampling rate r, and

the number of sensors n. To explore this, we obtain the minimum decision delay for each

value of the sampling rate r numerically, and the network delay via simulation. We use

Eqn. 4.25 to obtain the mean detection delay for NADM, and Theorem 4.1 to obtain the

mean detection delay for NODM procedure.

4.6.1 Optimal Sampling Rate

Consider a sensor network with n nodes. For a given probability of false alarm, the

decision delay (detection delay without the network–delay component) decreases with

increase in sampling rate. This is due to the increase in the number of samples that

the fusion centre receives within a given time. But, as the sampling rate increases, the

network delay increases due to the increased packet communication load in the network.

Therefore it is natural to expect the existence of a sampling rate r∗, with r∗ < σ/n, (the

sampling rate should be less than σ/n, for the queues to be stable; see Theorem 4.2)

that optimizes the tradeoff between these two components of detection delay. Such an

r∗, in the case of NODM can be obtained by minimising the following expression over r

(refer Theorem 1 of [Premkumar et al.]).

(d(r) + l(r)) (1− α)− ρ · l(r) + 1

r
min
Πα

E
[
K̃ −K

]+

Note that in the above expression, the delay term minΠα
E
[
K̃ −K

]+
also depends on

the sampling rate r via the probability of change pr = 1 − (1 − p)(1/r). The delay due

to coarse sampling l(r)(1 − α) − ρ · l(r) can be found analytically (see Appendix). We

can approximate the delay minΠα
E
[
K̃ −K

]+
by the asymptotic (as α → 0) delay as

| ln(α)|
nKL(f1,f0)+| ln(1−pr)|

where KL(f1, f0) is the Kullback–Leibler divergence between the pdfs

f1 and f0 (see [Tartakovsky and Veeravalli, 2005]). But, obtaining the network–delay
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(i.e., d(r)(1 − α)) analytically is hard, and hence an analytical characterisation of r∗

appears intractable. Hence, we have resorted to evaluation via simulation and numerical

computation.

The distribution of sensor observations are taken to be N (0, 1) and N (1, 1), before

and after the change respectively for all the 10 nodes. We choose ρ = 0 and the

probability of occurrence of change in a slot to be p = 0.0005, i.e., the mean time

until change is 2000 slots. minΠα
E
[
K̃ −K

]+
and d(r) are obtained from simulation

for α = 0.01 and σ = 0.3636, for 1000 simulation runs, and the expression for mean

detection delay (displayed above) is plotted against r in Figure 4.14. In Figure 4.14, we

also plot the approximate mean detection delay which is obtained through the expression

for l(r) and the approximation, minΠα
E
[
K̃ −K

]+
≈ | ln(α)|

nI(f1,f0)+| ln(1−pr)|
. We study this

approximation as this provides an (approximate) explicit expression for the mean decision

delay. The delay in the FJQ–GPS does not have a closed form expression. Hence, we

still need simulation for the delay due to queueing network. Note that at time k = 0, the

length of the queues are set of zero. The mean detection delay due to NADM procedure

(see Eqn. 4.25) is also plotted in Figure 4.14.

As would have been expected, we see from Figure 4.14 that the NADM procedure

has a better mean detection delay performance than the NODM procedure. Note that

σ/n = 0.03636 and hence for the queues to be stable (see Theorem 4.2), the sampling

rate has to be less that σ/n = 0.03636 (1/28 < 0.03636 < 1/27). As the sampling rate

r increases to 1/28 (the maximum allowed sampling rate), the queueing delay increases

rapidly. This is evident from Figure 4.14. Also, we see from Figure 4.14 that operating

at a sampling rate around 1/34(≈ 0.0294) samples/slot would be optimum. The optimal

sampling rate is found to be approximately the same for NODM and NADM. At the

optimal sampling rate the mean detection delay of NODM is 90 slots and that of NADM

is 73 slots.
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Figure 4.14: Mean detection delay for n = 10 nodes is plotted against the sampling rate
r for both NODM and NADM. For NODM, an approximate analysis is also plotted. This
was obtained with the prior probability ρ = 0, p = 0.0005, probability of false alarm
target α = 0.01, σ = 0.3636 and with the sensor observations being N (0, 1) and N (1, 1),
before and after the change respectively.

4.6.2 Optimal Number of Sensor Nodes (Fixed Observation

Rate)

Now let us consider fixing n × r. This is the number of observations the fusion centre

receives per slot in a network with n nodes sampling at a rate r (samples per slot). It is

also a measure of the energy spent by the network per slot. Since it has been assumed

that the observations are conditionally independent and identically distributed across

the sensors and over time, it is natural to ask how beneficial it is to have more nodes

sampling at a lower rate, when compared to fewer nodes sampling at a higher rate with

the number of observations per slot being the same. With ρ = 0, p = 0.0005, α = 0.01,

and σ = 0.3636, and f0 ∼ N (0, 1) and f1 ∼ N (1, 1), and from 1000 simulation runs, we

present simulation results for two examples, the first one being nr = 1/3 (the case of

a heavily loaded network) and the second one being nr = 1/100 (the case of a lightly

loaded network, nr ≪ σ).
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Figure 4.15: Mean decision delay of NODM procedure for n× r = 1/3 is plotted against
the the number of nodes n. The plot is obtained with ρ = 0, p = 0.0005, α = 0.01
and with the sensor observations being N (0, 1) and N (1, 1), before and after the change
respectively. The components of the mean decision delay, i.e., the coarse sampling delay

(1−α)l(r)− ρl(r), and the decision maker delay, 1
r
minΠα

E
[
K̃ −K

]+
are shown on the

right.

Figure 4.15 shows the plot of mean decision delay, l(r)(1−α−ρ)+ 1
r
minΠα

E
[
K̃ −K

]+

versus the number of sensors when nr = 1/3. As n increases, the sampling rate r =

1/(3n) decreases and hence the coarse sampling delay l(r)(1 − α) increases; this can

be seem to be approximately linear by analysis of the expression for l(r) given in the

Appendix. Also, as n increases, the decision maker gets more samples at the decision

instants and hence the delay due to the decision maker 1
r
minΠα

E
[
K̃ −K

]+
decreases

(this is evident from the right side of Figure 4.15). Figure 4.15 shows that in the region

where n is large (i.e., n > 20) or n is very small (i.e., n < 5), as n increases, the mean

decision delay increases. This is because in this region as n increases, the decrease in

the delay due to decision maker is smaller compared to the increase in the delay due to

coarse sampling. However, in the region where n is moderate (i.e., for 5 6 n < 20), as

n increases, the decrease in the delay due to decision maker is large compared to the

increase in the delay due to coarse sampling. Hence in this region, the mean decision

delay decreases with n. Therefore, we infer that when n × r = 1
3
, deploying 20 nodes

sampling at 1/60 samples per slot is optimal, when there is no network delay.
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Figure 4.16: Mean detection delay for n×r = 1/3 is plotted against the number of nodes
n. This was obtained with ρ = 0, p = 0.0005, α = 0.01 σ = 0.3636 and with the sensor
observations being N (0, 1) and N (1, 1), before and after the change respectively.

Figure 4.16 shows the mean detection delay (i.e., the network delay plus the decision

delay shown in Figure 4.15) versus the number of nodes n for a fixed n×r = 1/3. As the

the number of nodes n increases, the sampling rate r = 1/(3n) decreases. For large n

(and equivalently small r), in the case of NODM with the Shiryaev procedure, the network

delay, d(r) ≈ n
σ
as it requires n (independent) successes, each with probability σ, in the

random access network to transport a batch of n samples (also, since the sampling rate

r is small, one would expect that a batch is delivered before a new batch is generated)

and the decision maker requires just one batch of n samples to stop (after the change

occurs). Hence, for large n, the detection delay is approximately l(r)(1−α)+d(r)(1−α) ≈
l(r)(1−α)+ n

σ
(1−α). It is to be noted that for large n, to achieve a false alarm probability

of α, the decision maker requires Nα < n samples (the mean of the log–likelihood ratio,

LLR of received samples, after change, is the Kullback–Leibler divergence between pdfs

f1 and f0, given by I(f1, f0) > 0. Hence, the posterior probability, which is a function

of LLR, increases with the the number of received samples. Thus, to cross a threshold

of γ(α), we need Nα samples. Thus, for large n, in the NADM procedure, the detection
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Figure 4.17: Mean detection delay for n × r = 0.01 is plotted against the the number
of nodes n. This was obtained with ρ = 0, p = 0.0005, α = 0.01 and with the sensor
observations being N (0, 1) and N (1, 1), before and after the change respectively.

delay is approximately l(r)(1− α) + Nα

σ
(1− α), where Nα/σ is the mean network–delay

to transport Nα samples. Thus, for large n, the difference in the mean detection delay

between NODM and NADM procedures is approximately 1−α
σ
(n − Nα). Note that Nα

depends only on α and hence the quantity 1−α
σ
(n−Nα) increases with n. This behaviour

is in agreement with Figure 4.16. Also, as n× r = 1/3, we expect the network delay to

be very large (as 1/3 is close to σ = 0.3636) and hence having a single node is optimal

which is also evident from Figure 4.16.

It is also possible to find an example where the optimal number of nodes is greater

than 1. For example this occurs in the above setting for n× r = 0.01 (see Figure 4.17).

Note that having n = 10 sensors is optimal for the NADM procedure. The NODM

procedure makes the decision only when it receives a batch of n samples corresponding

to a sampling instant, whereas NADM procedure makes the decision at every time slot

irrespective of whether it receives a sample in that time slot or not. Thus, the Bayesian

update that NADM does at every time slot makes it stop earlier than NODM.
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4.7 Conclusion

In this chapter, we have considered the problem of minimising the mean detection delay in

an event detection on ad hoc wireless sensor network. We provide two ways of processing

samples in the fusion centre: i) Network Oblivious (NODM) processing, and ii) Network

Aware (NADM) processing. We show that in NODM processing, under periodic sampling,

the detection delay decouples into decision and network delays. An important implication

of this is that an optimal sequential change detection algorithm can be used in the

decision device independently of the random access network. We also formulate and solve

the change detection problem in the NADM setting in which case the optimal decision

maker needs to use the network state in its optimal stopping rule. Also, we study the

network delay involved in this problem and show that it is important to operate at a

particular sampling rate to achieve the minimum detection delay.
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4.8 Appendix

Evolution of Qk

LetQk+1 = [λk+1, Bk+1,∆k+1,Wk+1,Rk+1] = φQ(Qk,Mk), where we define the evolution

of each of the components of the state below.

• λk+1: If λk = 1, then there is only one slot–to–go for the next sampling instant

and hence λk+1 = 1/r (as there are 1/r slots–to–go for the next sampling instant

from slot k + 1). If λk > 1, then the number of slots–to–go for the next sampling

instant is λk − 1, i.e.,

λk+1 = φλ(Qk,Mk) :=
1

r
1{λk=1} + (λk − 1)1{λk>1} (4.26)

• Bk+1: Bk+1 can be either Bk or Bk+1. The only event that makes Bk+1 = Bk+1 is

as follows: At the beginning of slot k, the decision maker has already received and

processed all components, other than the jth component (for some j), of batch Bk

(i.e., R
(j)
k = 0 and

∑n
i=1R

(i)
k = n− 1) and during time slot k, there is a successful

transmission from sensor node j (i.e., Mk = j). Thus,

Bk+1 = φB(Qk,Mk)

:=





Bk + 1 if Mk = j > 0, R
(j)
k = 0,

n∑
i=1

R
(i)
k = n− 1

Bk otherwise.

(4.27)

• ∆k+1: At time k+1, ∆k+1 denotes the number of slots back at which the batch that

is currently being processed is generated. ∆k+1 can be 0 or ∆k+1 or ∆k+1−1/r.

∆k+1 = 0 if the batch that is currently expected at time k + 1 by the decision

maker is not yet generated or has been generated at time k + 1. ∆k+1 = ∆k + 1 if

the batch that is currently being processed at time k + 1 is the same as the batch

that was expected or being processed at time k. ∆k+1 = ∆k + 1− 1/r if the batch

that is currently expected or being processed at time k + 1 is Bk + 1, where Bk is
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the batch that was being processed at time k. ∆k+1 is given by

∆k+1

:= max

{
k + 1− Bk+1

r
, 0

}

= max

{
k − Bk

r
+ 1− Bk+1 −Bk

r
, 0

}

= max

{(
k − Bk

r

)
1{(k−Bk/r)>0} +

(
k − Bk

r

)
1{(k−Bk/r)60} + 1− Bk+1 −Bk

r
, 0

}

= max

{(
k − Bk

r

)
1{∆k>0} +

(
k − Bk

r

)
1{∆k=0} + 1− Bk+1 −Bk

r
, 0

}

= max

{
∆k1{∆k>0} +

(
k − Bk

r

)
1{∆k=0} + 1− Bk+1 −Bk

r
, 0

}

= max

{
∆k1{∆k>0} +

(
k − Bk

r

)
1{∆k=0}

(
1{k−Bk/r=0} + 1{k−Bk/r<0}

)
+ 1− Bk+1 −Bk

r
, 0

}

= max

{
∆k1{∆k>0} +

(
k − Bk

r

)
1{∆k=0}

(
1{k=Bk/r} + 1{(Bk−1)/r<k<Bk/r}

)
+ 1− Bk+1 −Bk

r
, 0

}

= max

{
∆k1{∆k>0} + 1{∆k=0}

(
0 · 1{λk=1/r} +

(
k − Bk

r

)
· 1{λk 6=1/r}

)
+ 1− Bk+1 −Bk

r
, 0

}
.(4.28)

We interpret the above equation as follows.

◦ If at the beginning of time slot k, there are outstanding samples of batch Bk

(i.e., ∆k > 0), then at the beginning of the time slot k + 1, there are two

possibilities:

∗ Bk+1 = Bk, which means that there are still outstanding samples of batch

Bk in the queues of the sensor node. Thus ∆k+1 = ∆k + 1.

∗ Bk+1 = Bk + 1, which means that all samples of batch Bk are received

by the fusion centre and hence, the delay of the next sample, if already

generated, is ∆k+1 = (∆k + 1− 1/r)+.

◦ If at the beginning of time slot k, there are no outstanding samples of batch

Bk (i.e., ∆k = 0), then it means that the samples of batch Bk are not yet

generated if λk 6= 1/r or just been generated at time k if λk = 1/r. Thus, in

this case also, at the beginning of the time slot k+1, there are two possibilities:

∗ λk = 1/r, which means that the samples of batch Bk are generated at
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k and if Bk+1 = Bk, this means that some of these samples are still in

sensor node queues. Hence ∆k+1 = 1.

∗ λk 6= 1/r, which means that the samples of batch Bk are not yet generated

and hence ∆k+1 = 0.

◦ The event that ∆k = 0, Bk+1 = Bk +1 can happen only if n = 1, 1/r = 1 and

there is a successful transmission during slot k, in which case, ∆k+1 = 0.

This is summarized as follows.

∆k+1 = φ∆(Qk,Mk)

:=





0 if ∆k = 0, Bk+1 = Bk, λk 6= 1/r

1 if ∆k = 0, Bk+1 = Bk, λk = 1/r

0 if ∆k = 0, Bk+1 = Bk + 1

∆k + 1 if ∆k > 0, Bk+1 = Bk

(∆k + 1− 1
r
)+ if ∆k > 0, Bk+1 = Bk + 1.

(4.29)

Note that Bk+1 is obtained using φB(Qk,Mk) (see Eqn. 4.27).

• W
(i)
k+1

◦ No successful transmission (Mk = 0): In this case, the sequencer queue

is not affected at the beginning of time slot k + 1, i.e., W
(i)
k+1 = W

(i)
k .

◦ Successful transmission of node i’s current sample (Mk = i, R
(i)
k = 0):

In this case, the sample is delivered to the decision maker as soon as it is

received and hence, the sequencer queue is not affected, at the beginning of

time slot k + 1. Note that W
(i)
k+1 = W

(i)
k = 0.

◦ Successful transmission of node i’s later sample (Mk = i, R
(i)
k = 1): In

this case, the received sample is an out–of–sequence sample and hence it is

queued in the sequencer queue, i.e., W
(i)
k+1 = W

(i)
k + 1.
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◦ Successful transmission of node j’s sample (Mk = j 6= i): In this case, if

the received sample corresponds to the last sample of batch Bk (i.e., R
(j)
k = 0

and
∑n

i=1R
(i)
k = n− 1), then the HOL packet, if any, in the sequencer queues

are delivered to the decision maker. i.e., W
(i)
k+1 = (W

(i)
k − 1)+.

On the other hand, if in this case, the received sample is not the last sample

of batch Bk (i.e.,
∑n

i=1R
(i)
k < n− 1), then the sequencer queue is not affected

at the beginning of time slot k + 1. i.e., W
(i)
k+1 = W

(i)
k .

The above points are summarized as follows:

W
(i)
k+1 = φW (i)(Qk,Mk)

:=





W
(i)
k if Mk = 0,

0 = W
(i)
k if Mk = i, R

(i)
k = 0

W
(i)
k + 1 if Mk = i, R

(i)
k = 1

W
(i)
k if Mk = j /∈ {0, i} and

∑n
s=1R

(s)
k < n− 1,

(W
(i)
k − 1)+ if Mk = j /∈ {0, i} R

(j)
k = 0, and

∑n
s=1R

(s)
k = n− 1

(4.30)

• R
(i)
k+1

◦ No successful transmission (Mk = 0): In this case, R(i) is not affected at

the beginning of time slot k + 1, i.e., R
(i)
k+1 = R

(i)
k .

◦ Successful transmission of node i’s sample (Mk = i): In this case,

the sample is delivered to the decision maker if it is not an out–of–sequence

sample; otherwise, it is stored in the sequencer queue. In either case, the

decision maker must have received the sample X
(i)
Bk

at the beginning of time

slot k + 1. Note that R
(i)
k+1 = R

(i)
k = 1.

◦ Successful transmission of node j’s sample (Mk = j 6= i): There are

two cases here.

∗ Case 1: The received sample is not the last sample of batch Bk (i.e.,
∑n

i=1R
(i)
k < n − 1 or R

(j)
k = 1 and

∑n
i=1R

(i)
k = n − 1). In this case, the
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state of R(i) remains the same at the beginning of time slot k + 1, i.e.,

R
(i)
k+1 = R

(i)
k .

∗ Case 2: The received sample is the last sample of batch Bk (i.e., R
(j)
k = 0

and
∑n

i=1R
(i)
k = n − 1). In this case, the state of R

(i)
k+1 remains 1 at

the beginning of time slot k + 1 if W
(i)
k > 0; otherwise, R

(i)
k+1 = 0, i.e.,

R
(i)
k+1 = 1

{W
(i)
k

>0}
.

The above points are summarized as follows:

R
(i)
k+1 = φR(i)(Qk,Mk)

:=





R
(i)
k if Mk = 0,

1 if Mk = i,

R
(i)
k if Mk = j /∈ {0, i},∑n

s=1R
(s)
k < n− 1,

R
(i)
k if Mk = j /∈ {0, i}, R(j)

k = 1,
∑n

s=1R
(s)
k = n− 1,W

(i)
k = 0

0 if Mk = j /∈ {0, i}, R(j)
k = 0,

∑n
s=1R

(s)
k = n− 1,W

(i)
k = 0

1 if Mk = j /∈ {0, i}, R(j)
k = 0,

∑n
s=1R

(s)
k = n− 1,W

(i)
k > 0
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Distribution of state noise N

Let q = [λ, b, δ,w, r]. Note that P
{
Mk = m

Qk = q,Θk = θ
}
= P

{
Mk = m

Qk = q
}

and is given by

P
{
Mk = 0

Qk = q
}
=





1 if φN(q) = 0

1− σ if φN(q) > 0

P
{
Mk = m

Qk = q
}
=





0 if φN(q) = 0

σ
φN (q)

if φL(m)(q) > 0, m = 1, 2, 3, · · · , n.

where φN(q) and φL(m)(q) are obtained from Eqns. 4.9 and 4.8. The distribution function,

P
{
Ok = o

Qk = q,Θk = θ
}
= P

{
Ok = o

Qk = q,Θk = θ
}
is given by

P
{
Ok = o

Qk = q,Θk = 0
}
=





1− p if o = 0

p if o = 1,

0 otherwise.

P
{
Ok = o

Qk = q,Θk = 1
}
=





1 if o = 0

0 otherwise.
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Proof of Lemma 4.1

Let q = [λ, b, δ,w, r]. From Eqn. 4.18,

Πk := P
{
T 6 k

Ik−1,Qk = q,Yk

}

= P
{
T 6 k − δ

Ik−1,Qk = q,Yk

}
+ P

{
k − δ < T 6 k

Ik−1,Qk = q,Yk

}

= P
{
T 6 k − δ

Ik−1,Qk = q,Yk

}

+ P
{
T > k − δ

Ik−1,Qk = q,Yk

}
· P
{
T 6 k

T > k − δ, Ik−1,Qk = q,Yk

}
,

= Ψk + (1−Ψk) · P
{
T 6 k

T > k − δ, Ik−1,Qk = q,Yk

}
,

= Ψk + (1−Ψk) ·
P {k − δ < T 6 k}P

{
Ik−1,Qk = q,Yk

k − δ < T 6 k
}

P {T > k − δ}P
{
Ik−1,Qk = q,Yk

T > k − δ
}

= Ψk + (1−Ψk) ·
P {k − δ < T 6 k}
P {T > k − δ} (4.31)

= Ψk + (1−Ψk)
(
1− (1− p)δ

)
(4.32)

Eqn. 4.31 is justified as follows. Note that

P
{
Ik−1,Qk = q,Yk

k − δ < T 6 k
}

= P
{
Q[0:k−1],Qk = q,X[1:Bk−1], {X(i)

Bk
: R

(i)
k = 1}, u[0:k−1]

k − δ < T 6 k
}

= P
{
Q[0:k−1],Qk = q

k − δ < T 6 k
}

·P
{
X[1:Bk−1], {X(i)

Bk
: R

(i)
k = 1}

k − δ < T 6 k,Q[0:k−1],Qk = q
}

·P
{
u[0:k−1]

k − δ < T 6 k,Q[0:k−1],Qk = q,X[1:Bk−1], {X(i)
Bk

: R
(i)
k = 1}

}

= P
{
Q[0:k−1],Qk = q

}
· P
{
X[1:Bk−1], {X(i)

Bk
: R

(i)
k = 1}

k − δ < T,Q[0:k−1],Qk = q
}

·P
{
u[0:k−1]

Q[0:k−1],Qk = q,X[1:Bk−1], {X(i)
Bk

: R
(i)
k = 1}

}

= P
{
Q[0:k−1],Qk = q

T > k − δ
}
· P
{
X[1:Bk−1], {X(i)

Bk
: R

(i)
k = 1}

T > k − δ,Q[0:k−1],Qk = q
}

·P
{
u[0:k−1]

T > k − δ,Q[0:k−1],Qk = q,X[1:Bk−1], {X(i)
Bk

: R
(i)
k = 1}

}

= P
{
Ik−1,Qk = q,Yk

T > k − δ
}
.

We use the following facts in the above justification: i) the evolution of the queueing

system Qk is independent of the change point T , ii) whenever T > k−δ, the distribution

of any sample X
(i)
h , h 6 Bk is f0, and iii) the control uk = µ̃(Ik).
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Recursive computation of Πk

At time k, based on the index of the node that successfully transmits a packet Mk, the

set of all sample paths Ω can be partitioned based on the following events,

E1,k :=
{
ω : Mk(ω) = 0 or Mk(ω) = j > 0, R

(j)
k (ω) = 1

}

E2,k :=

{
ω : Mk(ω) = j > 0, R

(j)
k (ω) = 0,

n∑

i=1

R
(i)
k (ω) < n− 1

}

E3,k :=

{
ω : Mk(ω) = j > 0, R

(j)
k (ω) = 0,

n∑

i=1

R
(i)
k (ω) = n− 1

}
,

i.e., Ω = E1,k ∪ E2,k ∪ E3,k. We note that the above events can also be described by using

Qk and Qk+1 in the following manner

E1,k = {ω : Wk+1(ω) = Wk(ω),Rk+1(ω) = Rk(ω)}
⋃

{ω : Wk+1(ω) = Wk(ω) + ej,Rk+1(ω) = Rk(ω)}

E2,k = {ω : Wk+1(ω) = Wk(ω),Rk+1(ω) = Rk(ω) + ej}

E3,k =

{
ω :

n∑

i=1

R
(i)
k (ω) = n− 1, ∀i,W (i)

k+1(ω) = (W
(i)
k (ω)− 1)+, R

(i)
k+1(ω) = 1

{W
(i)
k

>0}

}
.

Here, the events E1,k and E2,k represent the case Bk+1 = Bk, and the event E3,k
represents the case Bk+1 = Bk+1 (i.e., only if the event E3,k occurs then the batch index

is incremented). We are interested in obtaining Πk+1 from [Qk,Πk] and Zk+1. We show

that at time k + 1, the statistic Ψk+1 (after having observed Zk+1) can be computed in

a recursive manner using Ψk and Qk. Using Lemma 4.1 (using Eqn. 4.20) we compute
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Πk+1 from Ψk+1.

Ψk+1 = P
{
Θ̃k+1 = 1 | Ik+1

}

=

3∑

c=1

P
{
Θ̃k+1 = 1, Ec,k | Ik+1

}

=

3∑

c=1

P
{
Θ̃k+1 = 1 | Ec,k, Ik+1

}
1Ec,k (∵ Ec,k is Ik+1 measurable)

• Case Mk = 0 or Mk = j > 0, R
(j)
k = 1:

Πk+1

= P {Θk+1 = 1 | E1,k, Ik+1}

= P {Θk+1 = 1 | E1,k, Ik,Qk+1 = q′}

=
P {Θk+1 = 1 | E1,k, Ik} · fQk+1|Θk+1,E1,k,Ik(q

′|1, E1,k, Ik)
f
Qk+1

E1,k,Ik
(q′|E1,k, Ik)

(by Bayes rule)

= P {Θk+1 = 1 | E1,k, Ik} (Qk+1 is independent of Θk+1)

= P {Θk = 0,Θk+1 = 1 | Ik}+ P {Θk = 1,Θk+1 = 1 | Ik}

= (1− Πk)p+Πk

• Case Mk = j > 0, R
(j)
k = 0,

∑n
i=1R

(i)
k < n − 1: In this case, the sample X

(j)
Bk

is successfully transmitted and is passed on to the decision maker. The decision

maker receives just this sample, and computes Πk+1. We compute Ψk+1 from Ψk

and then we use Lemma 4.1 (using Eqn. 4.20) to compute Πk+1 from Ψk+1.

Ψk+1

= P
{
Θ̃k+1 = 1 | E2,k, Ik+1

}

= P
{
Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

}

= P
{
Θ̃k = 0, Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

}

+P
{
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

}
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Since, we consider the case when the fusion center received a sample at time k+1

and Bk+1 = Bk, ∆k+1 = ∆k+1 and hence, the state Θ̃k+1 = Θk+1−∆k+1
= Θk−∆k

=

Θ̃k. Thus, in this case, Ψk+1 can be written as

Ψk+1

= P
{
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

}

(a)
=

P
{
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik

}
· P
{
Qk+1 = q′ | Θ̃k = 1, Θ̃k+1 = 1, E2,k, Ik

}

P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1
(y|E2,k, Ik,q′)

·f
Yk+1|Θ̃k,Θ̃k+1,E2,k,Ik,Qk+1

(y | 1, 1, E2,k,q′, Ik)

(b)
=

P
{
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik

}
· P(Qk+1 = q′|E2,k, Ik) · fYk+1|Θ̃k

(y | 1)
P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1

(y|E2,k, Ik,q′)

(c)
=

P
{
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik

}
· f1(y)

P
{
Θ̃k = 0 | E2,k, Ik,Qk+1

}
· f

Yk+1|Θ̃k
(y|0) + P

{
Θ̃k = 1 | E2,k, Ik,Qk+1

}
· f

Yk+1|Θ̃k
(y|1)

(d)
=

Ψkf1(y)

(1−Ψk)f0(y) + Ψkf1(y)

We explain the steps (a), (b), (c), (d) below.

(a) By Bayes rule, for events A,B,C,D,E, F , we have

P {AB | CDEF} =
P {AB | CD}P {E | ABCD}P {F | ABCDE}

P {E | CD}P {F | CDE}

(b) Qk+1 is independent of Θ̃k, Θ̃k+1. Also, given Θ̃k, Yk+1 is independent of

Θ̃k+1, E2,k, Ik,Qk+1

(c) For any events A,B, and a continuous random variable Y , the conditional

density function fY |A(y|A) = P {B | A} fY |AB(y|AB)+P {Bc | A} fY |ABc(y|ABc).

Also, given Θ̃k, Yk+1 is independent of E2,k, Ik,Qk+1

(d) E2,k is [Ik,Qk+1] measurable, and hence, given [Ik,Qk+1], Θ̃k is independent

of E2,k.

• Case Mk = j > 0, R
(j)
k = 0,

∑n
i=1R

(i)
k = n − 1: In this case, at time k + 1,

the decision maker receives the last sample of batch Bk, X
(j)
Bk

(that is successfully
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transmitted during slot k) and the samples of batch Bk+1, if any, that are queued

in the sequencer buffer. We compute Ψk+1 from Ψk and then we use Lemma 4.1

(using Eqn. 4.20) to compute Πk+1 from Ψk+1. In this case, the decision maker

receives N :=
∑n

i=1 1{W
(i)
k

>0}
samples of batch Bk + 1. Also, note that N is Ik

measurable.

Ψk+1 = P
{
Θ̃k+1 = 1 | E3,k, Ik+1

}

= P
{
Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

}

= P
{
Θ̃k = 0, Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

}

+P
{
Θ̃k = 1, Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

}

Since, we consider the case Bk+1 = Bk + 1, ∆k+1 = ∆k + 1 − 1/r and hence, the

state Θ̃k+1 = Θk+1−∆k+1
= Θk−∆k+1/r.

Let y = [y0, y1, · · · , yn]. Consider

P
{
Θ̃k = θ̃, Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

}

(a)
=

P
{
Θ̃k = θ̃, Θ̃k+1 = 1 | E3,k, Ik

}
· P
{
Qk+1 = q′ | Θ̃k = θ̃, Θ̃k+1 = 1, E3,k, Ik

}

P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1
(y|E3,k, Ik,q′)

·f
Yk+1|Θ̃k,Θ̃k+1,E3,k,Ik,Qk+1

(y | θ̃, 1, E3,k,q′, Ik)

(b)
=

P
{
Θ̃k = θ̃, Θ̃k+1 = 1 | E3,k, Ik

}
· P(Qk+1 = q′|E3,k, Ik) · fθ̃(y0)

∏n
i=1 f1(yi)

P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1
(y|E3,k, Ik,q′)

(c)
=

P
{
Θ̃k = θ̃ | E3,k, Ik

}
· P
{
Θ̃k+1 = 1 | Θ̃k = θ̃, E3,k, Ik

}
· fθ̃(y0)

∏n
i=1 f1(yi)

∑1
θ̃′=0

∑1
θ̃′′=0 P

{
Θ̃k = θ̃′, Θ̃k+1 = θ̃′′, | E3,k, Ik,Qk+1

}
· f

Yk+1|Θ̃k,Θ̃k+1E3,k,Ik,Qk+1
(y|θ̃′, θ̃′′, E3,k, Ik,q′)

.

We explain the steps (a), (b), (c) below.

(a) By Bayes rule, for events A,B,C,D,E, F , we have

P {AB | CDEF} =
P {AB | CD}P {E | ABCD}P {F | ABCDE}

P {E | CD}P {F | CDE}

(b) Qk+1 is independent of Θ̃k, Θ̃k+1. Also, given Θ̃k, Yk+1,0 is independent of
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Θ̃k+1, E3,k, Ik,Qk+1, and given Θ̃k+1, Yk+1,i is independent of Θ̃k, E3,k, Ik,Qk+1.

It is to be noted that given the state of nature, the sensor measurements

Yk+1,0, Yk+1,1, · · · , Yk+1,n are conditionally independent.

(c) For any events A,B, and a continuous random variable Y , the conditional

density function fY |A(y|A) = P {B | A} fY |AB(y|AB)+P {Bc | A} fY |ABc(y|ABc).

Also, given Θ̃k, Yk+1 is independent of E3,k, Ik,Qk+1

It is to be noted that the event E3,k is [Ik,Qk+1] measurable, and hence, given

[Ik,Qk+1], Θ̃k is independent of E3,k. Thus, in this case,

Ψk+1 =
(1−Ψk)prf0(y0)

∏n
i=1 f1(yi) + Ψkf1(y0)

∏n
i=1 f1(yi)

(1−Ψk)(1− pr)f0(y0)
∏n

i=1 f0(yi) + (1−Ψk)prf0(y0)
∏n

i=1 f1(yi) + Ψkf1(y0)
∏n

i=1 f1(yi)
.

Thus, using Lemma 4.1 (using Eqn. 4.20), we have

Πk+1 = Ψk+1 + (1−Ψk+1)(1− (1− p)∆k+1)

=: φΨ(Ψk,Zk+1) + (1− φΨ(Ψk,Zk+1)) (1− (1− p)∆k+1)

= φΨ

(
Πk − (1− (1− p)∆k)

(1− p)∆k
,Zk+1

)

+

(
1− φΨ

(
Πk − (1− (1− p)∆k)

(1− p)∆k
,Zk+1

))
(1− (1− p)∆k+1)

=: φΠ ([Qk,Πk],Zk+1) .
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Proof of Theorem 4.3

We use the following Lemma to prove Theorem 4.3.

Lemma 4.2 If f : [0, 1] → R is concave, then the function h : [0, 1] → R defined by

h(y) = Eφ(x)

[
f

(
y · φ2(x) + (1− y)pr · φ1(x)

y · φ2(x) + (1− y)pr · φ1(x) + (1− y)(1− pr) · φ0(x)

)]

is concave, where φ(x) = y ·φ2(x)+ (1− y)pr ·φ1(x)+ (1− y)(1−pr) ·φ0(x), 0 < pr < 1,

and φ0(x), φ1(x), and φ2(x) are pdfs on X.

Proof Define the function h1 : [0, 1] → R as

h1(y;x) := f

(
yφ2(x) + (1− y)prφ1(x)

yφ2(x) + (1− y)prφ1(x) + (1− y)(1− pr)φ0(x)

)
φ(x).

Define the operator T as follows. T(·) :=
∫
(·) dx. Note that T is a linear operator

and that h(y) = T(h1(y;x)). Hence, it is sufficient to show that h1(y;x) is concave in y.

Note that f(y) is concave iff

f(y) = inf
(ai,bi)∈I

{
aiy + bi

}

where I = {(a, b) ∈ R2 : ay + b > f(y), y ∈ [0, 1]}. Hence, for each x

h1(y;x) =f

(
yφ2(x) + (1− y)prφ1(x)

yφ2(x) + (1− y)prφ1(x) + (1− y)(1− pr)φ0(x)

)
φ(x)

= inf
(ai,bi)∈I

{
ai

(
yφ2(x) + (1− y)prφ1(x)

yφ2(x) + (1− y)prφ1(x) + (1− y)(1− pr)φ0(x)

)
+ bi

}
φ(x)

= inf
(ai,bi)∈I

{
ai

(
yφ2(x) + (1− y)prφ1(x)

)
+ biφ(x)

}

= inf
(ai,bi)∈I

{an affine function of y}

where we used the definition of φ(x) in the third equality. From the last step in the

above Eqn. we infer that h1(y;x) is concave in y for each x.
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Note that in the finite H–horizon (truncated version of Eqn. 4.22), we note from value

iteration that the cost–to–go function, for a given q, JH
H ([q, π]) = 1− π is concave in π.

Hence, by Lemma 4.2, we see that for any given q, the cost–to–go functions JH
H−1([q, π]),

JH
H−2([q, π]), · · · , JH

0 ([q, π]) are concave in π.

Hence for 0 6 λ 6 1,

J∗([q, π]) = lim
H→∞

JH
0 ([q, π])

J∗([q, λπ1 + (1− λ)π2]) = lim
H→∞

JH
0

(
[q, λπ1 + (1− λ)π2]

)

> lim
H→∞

λJH
0 ([q, π1]) + lim

H→∞
(1− λ)JH

0 ([q, π2])

= λJ∗([q, π1]) + (1− λ)J∗([q, π2])

It follows that for a given q, J∗([q, π]) is concave in π.

Define the maps ξ : Q× [0, 1] → R+ and κ : Q× [0, 1] → R+, as

ξ([q, π]) := 1− π

κ([q, π]) := c · π + AJ∗([q, π])

where AJ∗([q, π]) := E

[
J∗
([
Qk+1, φΠ(νk,Zk+1)

]) νk = [q, π]

]
. Note that ξ([q, 1]) = 0,
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κ([q, 1]) = c, ξ([q, 0]) = 1 and

κ([q, 0]) = AJ∗([q, 0])

= E

[
J∗ ([Qk+1, φΠ(νk,Zk+1)])

νk = [q, 0]

]

(3)
= E

[
J∗ ([φQ(Qk,Mk), φΠ(νk,Zk+1)])

νk = [q, 0]

]

=
n∑

m=0

E

[
J∗ ([φQ(Qk,Mk), φΠ(νk,Zk+1)])

Mk = m, νk = [q, 0]

]
P

{
Mk = m

νk = [q, 0]

}

=

n∑

m=0

E

[
J∗ ([φQ(q,m), φΠ(νk,Zk+1)])

Mk = m, νk = [q, 0]

]
P

{
Mk = m

νk = [q, 0]

}

(6)

6

n∑

m=0

J∗

([
φQ(q,m),E

[
φΠ(νk,Zk+1)

Mk = m, νk = [q, 0]

]])
P

{
Mk = m

νk = [q, 0]

}

=

n∑

m=0

J∗ ([φQ(q,m), p)P

{
Mk = m

νk = [q, 0]

}

(8)

6

n∑

m=0

(1− p) · P
{
Mk = m

νk = [q, 0]

}

= 1− p

< 1

where in the above derivation, we use the evolution of Qk in step 3 (see Appendix),

the Jensen’s inequality (as for any given q, J∗(q, π) is concave in π) in step 6, and the

inequality J∗(q, π) 6 1− π in step 8.

Note that κ([q, 1])− ξ([q, 1]) > 0 and κ([q, 0])− ξ([q, 0]) < 0. Also, for a fixed q, the

function κ([q, π])− ξ([q, π]) is concave in π. Hence, by the intermediate value theorem,

for a fixed q, there exists γ(q) ∈ [0, 1] such that κ([q, γ]) = ξ([q, γ]). This γ is unique

as κ([q, π]) = ξ([q, π]) for at most two values of π. If in the interval [0, 1], there are two

distinct values of π for which κ([q, π]) = ξ([q, π]), then the signs of κ([q, 0]) − ξ([q, 0])

and κ([q, 1])− ξ([q, 1]) should be the same. Hence, the optimal stopping rule is given by

τ ∗ = inf {k : Πk > γ(Qk)}

where the threshold γ(q) is given by c · γ(q) + AJ∗([q, γ(q)]) = 1− γ(q).
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Chapter 5

Optimal Transient–Change

Detection

5.1 Introduction

In the previous chapters, we are concerned with the detection of a persistent change

(i.e., once the change occurs, the system stays in the in–change state for ever). However,

in some applications, the event that causes the change disappears after a finite time,

and the system goes to an out–of–change state which, based on the observations, is hard

to distinguish from the pre–change state. This change model, which we call transient

change, is applicable in intrusion detection applications where an intruder appears at

a random time, stays for a random length of time in the system, and then leaves the

region of interest (ROI). The goal is to detect whether a change has occurred, as early as

possible, even after the change has disappeared at the time of detection. We study this

problem of transient change detection in this chapter.

In the transient change model, the distribution of the observations after the change

disappears (i.e., in the out–of–change state) is the same as that when the change has

not happened yet (i.e., the pre–change state). Thus making a decision about the state

of the system as being pre–change or post–change (which includes the in–change and the

out–of–change state in the transient change model), based on the observations, appears

111
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to be more challenging than in the case of persistent change.

5.1.1 Summary of Contributions

We summarise the contributions of this chapter below:

1. We provide a model for the transient change and formulate the optimal transient

change detection problem.

2. We obtain the following procedures for detecting a transient change:

(i) MinD (Minimum Detection Delay) which minimises the mean detection delay

when the probability of false alarm is limited to α

(ii) A–MinD (Asymptotic – Minimum Detection Delay) which is obtained as a

limit of of the MinD procedure when the mean time until the occurrence of

change goes to ∞ (i.e., for a rare event)

(iii) MaxP (Maximum Probability of change) which maximises the probability

of stopping when the change is present (which we call the probability of

detection) when the probability of false alarm is limited to α.

5.1.2 Discussion of the Related Literature

Our work differs from all the previous work discussed in Section 1.1 in the following

ways.

1. In all the previous work, the change is persistent, i.e., once the system goes from

the pre–change state to the in–change state, it remains in the in–change state for

ever. But, we consider a sequential change detection problem where the change is

transient, i.e., the system stays in the in–change state only for a finite amount of

time.

2. We also pose the problem of maximising the probability of detection (defined in

Section 5.2.3) subject to a false alarm constraint. In the classical change detection

problem, since the probability of detection is 1− PFA this problem does not arise.
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In a recent technical report, Polunchenko and Tartakovsky studied the non–Bayesian

transient change detection problem, and studied the supremum detection delay performance

of CUSUM under a false alarm constraint, [Polunchenko and Tartakovsky, 2009].

5.1.3 Outline of the Chapter

The rest of this chapter is organised as follows. In Section 5.2, we formulate the transient

change detection problem. In Section 5.3, we obtain a sequential change detection

procedure MinD that achieves the minimum mean detection delay ADD subject to the

false alarm constraint, PFA 6 α. In Section 5.4, we discuss the asymptotic behaviour

of MinD, which we call A−MinD, as the probability of occurrence of the change goes

to zero (i.e., as the average time for the change to occur goes to ∞). In Section 5.5,

we obtain a sequential change detection procedure MaxP which achieves the maximum

probability of detection PD under the constraint, PFA 6 α. We provide numerical results

in Section 5.6. Finally, we summarise in Section 5.7.

5.2 Problem Formulation

We consider a discrete time system in which time is measured in slots and the slots

are indexed by non–negative integers. We assume that all nodes are time synchronised.

Also, we assume that the length of a slot is unity, and slot k refers to the time interval

[k, k + 1).

5.2.1 Change Model

A change occurs at a random time T ∈ Z+ and disappears at a random time E ∈ Z+,

such that E > T . This change–model is motivated by the behaviour of physical intrusion

(say, by a human) in a region under surveillance. Let Θk represent the state of the system

at time k. We say that Θk is 0 before the change occurs (pre–change), 1 when the change

is present in the system (in–change), and 2 after the change disappears (out–of–change)

(see Figure 5.1). Thus, with the state space of the system being defined as Θ = {0, 1, 2},
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0 2 3 41 Γ1

Θk = 2

Γ2Γ1 + 1 Γ2 + 1

Θk = 1
Θk = 0

Figure 5.1: State evolution. At any time k, state Θk ∈ {0, 1, 2}, where 0 represents
pre–change, 1 represents in–change and 2 represents out–of–change. Note that at time T
the state changes from 0 to 1, and at time E the state changes from 1 to 2.

1 20

ρ01 ρ12

ρ00 ρ11 ρ22 = 1

Figure 5.2: State transition diagram. Recall that State 0 represents pre–change state,
1 represents the in–change and 2 represents the out–of–change state. Note that state
θ − 1 can not be visited from state θ and that the state ‘2’ is an absorbing state.

Θk =





0, for k < T

1, for T 6 k < E

2, for k > E.

We assume that the evolution of the state process {Θk} is Markovian (see Figure 5.2)

and that the transition probabilities are given by

P {Θk = j | Θk−1 = i} = ρij, i, j ∈ {0, 1, 2}, (5.1)



5.2. Problem Formulation 115

with the following conditions: ρ02 = ρ10 = ρ20 = ρ21 = 0, and the other ρijs are strictly

positive. With these conditions, it is easy to see that ρ00 + ρ01 = 1, ρ11 + ρ12 = 1, and

ρ22 = 1, i.e., the system can not go to the out–of–change state from the pre–change state

directly (as ρ02 = 0), and it can not go to the pre–change state from the in–change (as

ρ10 = 0) or the out–of–change state (as ρ20 = 0). Also, the out–of–change state is an

absorbing state (as ρ22 = 1). Thus, given Θ0 = 0, the distributions of T and E − T are

geometric, and are given by

P {T = k | Θ0 = 0} = ρk−1
00 ρ01 = (1− ρ01)

k−1 ρ01

P {E − T = k | Θ0 = 0} = ρk−1
11 ρ12 = (1− ρ12)

k−1 ρ12.

Let the distribution of Θ0 be given by

P {Θ0 = θ} =





1− ρ, if θ = 0

ρ, if θ = 1

0, if θ = 2,

(5.2)

for some 0 6 ρ 6 1. We note that the transient change model reduces to the classical

change model when ρ12 = 0.

5.2.2 Observation Model

Observations are obtained sequentially starting from time k = 1 onwards. Let the

random variable Xk denote the observation at time k. The distribution of Xk in the

pre–change and the out–of–change state (i.e., when 1 6 k < T or k > E) is given by

F0(·), and that in the in–change state (i.e., when T 6 k < E) is given by F1(·), where
F1(·) 6= F0(·). We assume that the corresponding pdfs f0 and f1 6= f0 exist (and also

that the measure described by f0 is absolutely continuous with respect to that described

by f1). Conditioned on the state of the nature (i.e., on T and E), the observations are

independent across time.

The model, we consider here, is an extension of of what is considered in the classical
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work, [Shiryaev, 1978], [Page, 1954] and [Veeravalli, 2001]), and that the special case of

E = ∞ corresponds to the classical change detection problem. Note that at any time

k, the state Θk is not observed directly and that it is observed partially only through the

observation Xk. Also, note that the states “0” and “2” are indistinguishable from the

observations.

At every integer–valued time k, we observe Xk and hence, we have a collection of

observations X[1:k]. Based on the observations X[1:k], ρ, ρijs, and the pre–change and the

in–change pdfs f0(·) and f1(·), the decision maker has to make a decision on whether

the change has occurred (denoted by action “1”) or to continue observing (denoted

by action “0”). Let Ak be the decision made by the fusion centre at time k and let

Ik := [X[1:k], A[0:k−1]] be the information available to the decision maker (fusion centre)

at time k. Let τ be a stopping time with respect to the information sequence I1, I2, · · · .

We now define the various performance measures of sequential change detection

procedures in Section 5.2.3 and formulate the transient change detection problems.

5.2.3 Definitions

In the definitions below, we use the terms change detection procedure and stopping time

interchangeably, since the stopping time defines a sequential change detection procedure.

Definition 5.1 Probability of False Alarm (PFA) for a change detection procedure

τ is defined as the probability that the change detection procedure τ raises an alarm in

state 0, i.e.,

PFA(τ) := P {τ < T} = P {Θτ = 0}

Definition 5.2 Probability of Detection (PD) for a change detection procedure τ is

defined as the probability that the change detection procedure τ raises an alarm in state

1, i.e.,

PD(τ) := P {T 6 τ < E} = P {Θτ = 1}
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Definition 5.3 Probability of Miss (PM) for a change detection procedure τ is defined

as the probability that the change detection procedure τ raises an alarm in state 2, i.e.,

PM(τ) := P {τ > E} = P {Θτ = 2}

Note that for any τ , PFA(τ) + PD(τ) + PM(τ) = 1. The definition of the mean detection

delay (ADD) is the same as what we have defined in Chapter 2, i.e.,

ADD(τ) := E
[
(τ − T )+

]

A smaller ADD will result in a larger PFA. But, we will constrain the PFA.

We now formulate the following transient change detection problems

P5.1: We are interested in detecting the change as soon as it occurs, and thus a natural

choice is the change detection procedure that raises an alarm with the least mean

detection delay ADD subject to a false alarm constraint. We thus formulate the

problem as

minimise ADD(τ)

subject to PFA(τ) 6 α.

P5.2: Since, the change disappears at time E, we are interested in obtaining a change

detection procedure that stops and declares an alarm before E. Thus, we formulate

the change detection problem as one that maximises the probability of detection

PD subject to a false alarm constraint. We thus have

maximise PD(τ)

subject to PFA(τ) 6 α.

We solve the problem P5.1 in Section 5.3 and the problem P5.2 in Section 5.5.
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5.3 Minimum Detection Delay Policy (MinD)

In this section, we consider the problem P5.1 defined in Eqn. 5.3. Recall that at time

k, Θk ∈ {0, 1} is the state of nature, and Ak ∈ A = {0, 1} is the decision (or control or

action) chosen by the decision maker after having observedXk. We note that 0 represents

“take another sample” and 1 represents the action “stop and declare change.” We recall

that Ik =
[
X[1:k], A[0:k−1]

]
is the information vector that is available to the decision

maker, at the beginning of time slot k and that τ is a stopping time with respect to

the sequence I1, I2, · · · . At any time k, the cost function ck : {0, 1} × A → R+ for a

state–action pair (θ, a) is defined as follows. For any time before stopping, i.e., for k 6 τ ,

ck(θ, a) :=





0, if θ = 0, a = 0

1, if θ = 1, a = 0

1, if θ = 2, a = 0

λf , if θ = 0, a = 1

0, if θ = 1, a = 1

0, if θ = 2, a = 1

(5.3)

and for k > τ , ck(·, ·) := 0. Thus, for k 6 τ , we have

ck(Θk, Ak) := λf1{Θk=0}1{Ak=1} + 1{Θk 6=0}1{Ak=0} (5.4)

We are interested in obtaining an optimum stopping time τ that minimises the mean

detection delay subject to a constraint on the probability of false alarm.

min
τ

E
[
(τ − T )+

]
(5.5)

subject to P {τ < T} 6 α.

Let λf be the cost of false alarm. We are interested in obtaining a stopping time τMinD
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that minimises the expected cost (Bayesian risk), i.e.,

R(τMinD) := min
τ

E
[
λf · 1{τ<T} + (τ − T )+

]

= min
τ

E
[
λf · 1{Θτ=0} + (τ − T )+

]

= min
τ

E

[
λf · 1{Θτ=0} +

τ−1∑

k=0

1{Θk 6=0}

]

= min
τ

E

[
cτ (Θτ , 1) +

τ−1∑

k=0

ck(Θk, 0)

]

= min
τ

E

[
τ∑

k=0

ck(Θk, Ak)

]

= min
τ

E

[
∞∑

k=0

ck(Θk, Ak)

]

= min
τ

∞∑

k=0

E[ck(Θk, Ak)] (by monotone convergence theorem) (5.6)

Note that λf is a Lagrange multiplier and is chosen such that the false alarm constraint

is satisfied with equality, i.e., PFA(τ
MinD) = α (see [Shiryaev, 1978]). We note that for

every stopping time τ , there exists a policy µ = (µ1, µ2, · · · ) such that for any k, when

τ = k, Ak′ = µk′(Ik′) = 0 for all k′ < k and Ak′ = µk′(Ik′) = 1 for all k′ > k. Hence, the

optimal Bayesian cost given by Eqn. 5.6 becomes

R(τMinD) = min
τ

∞∑

k=0

E[ck(Θk, Ak)] = min
µ

∞∑

k=0

E[ck(Θk, Ak)]

= min
µ

∞∑

k=0

E[E[ck(Θk, Ak) | Ik]]

= min
µ

∞∑

k=0

E[E[ck(Θk, µk(Ik)) | Ik]]

= min
µ

E

[
∞∑

k=0

E[ck(Θk, µk(Ik)) | Ik]
]

(5.7)

where the last step follows from monotone convergence theorem. For each θ = 0, 1, and

2, we define the posterior probability of state θ, Πk,θ := E
[
1{Θk=θ}

Ik
]
. From Eqn. 5.4,



120 Chapter 5. Optimal Transient–Change Detection

we see that

ck(Θk, µk(Ik)) = λf1{Θk=0} · 1{µk(Ik)=1} + 1{Θk 6=0} · 1{µk(Ik)=0}

and hence,

E[ck(Θk, µk(Ik)) | Ik] = E
[
λf1{Θk=0} · 1{µk(Ik)=1} + 1{Θk 6=0} · 1{µk(Ik)=0} | Ik

]

= λf · E
[
1{Θk=0} | Ik

]
· 1{µk(Ik)=1} + E

[
1{Θk 6=0} | Ik

]
· 1{µk(Ik)=0}

= λf · Πk,01{µk(Ik)=1} + (1− Πk,0) · 1{µk(Ik)=0}.

From the above equation, it is easy to see that at time k, a sufficient statistic ([Bertsekas, 2005])

is the probability vector Πk = [Πk,0,Πk,1,Πk,2]. We call Πk as the information state at

time k. We also have a special information state called the terminal (or absorbing) state

t, to which the system enters when an alarm is raised. Thus, the state space of the system

is S = P∪{t}, where P is a 2–dimensional simplex defined as P := {(p0, p1, p2) ∈ [0, 1]3 :

p0 + p1 + p2 = 1}. We define the cost function c̃ : S × A → R+ as

c̃(s, a) =





λf · p0, if s = [p0, p1, p2] ∈ P, a = 1

1− p0, if s = [p0, p1, p2] ∈ P, a = 0

0, if s = t.

(5.8)

Since Πk is a sufficient statistic for Ik, for any policy µk there exists a corresponding

policy µ̃k such that µ̃k(Πk) = µk(Ik), and hence, Eqn. 5.6 can be written as

R(τMinD) = min
µ

E

[
∞∑

k=0

E[ck(Θk, µk(Ik)) | Ik]
]

= min
µ̃

E

[
∞∑

k=0

c̃(Πk, µ̃k(Πk))

]
(5.9)

We now show that given the previous state Πk−1, the previous action Ak−1, and the

current observationXk, the current stateΠk can be computed asΠk = Φ (Πk−1, Ak−1,Xk),
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where

Φ(s, a,x) :=





t, if s = t

t, if a = 1[
φ0(s,x), φ1(s,x), φ2(s,x)

]
, otherwise,

where for any p = [p0, p1, p2] ∈ P, the functions φθ(p,x), θ = 0, 1, 2 are defined as

follows:

φ0(p,x) :=
p0ρ00f0(x)

(p0ρ00 + p1ρ12 + p2) f0(x) + (p0ρ01 + p1ρ11) f1(x)
,

φ1(p,x) :=
(p0ρ01 + p1ρ11) f1(x)

(p0ρ00 + p1ρ12 + p2) f0(x) + (p0ρ01 + p1ρ11) f1(x)
, and

φ2(p,x) :=
(p1ρ12 + p2) f0(x)

(p0ρ00 + p1ρ12 + p2) f0(x) + (p0ρ01 + p1ρ11) f1(x)
.

It is to be noted that though the one stage cost function c̃, at time k, depends only on Πk,0,

the transition requires the vector of a posteriori probabilities Πk. Thus, the information

state process {Πk} is a controlled Markov process. Thus, the tuple (S,A,Φ(·, ·, ·), c̃)
defines a Markov decision process (MDP). We thus solve the problem defined in Eqn. 5.6

as follows. Since the one stage cost function and the transition kernel are time–invariant,

it is sufficient to look for stationary policies. Let µ̃ : S → A be a stationary policy. Then

the total cost on using the policy µ̃ is given by

Jµ̃(π) = E

[
∞∑

k=0

c̃(Πk, µ̃(Πk)) | Π0 = π

]
. (5.10)

Let µ∗ : S → A be an optimal stationary policy. The optimal total cost is then given by

J∗(π) = min
µ̃

E

[
∞∑

k=0

c̃(Πk, µ̃(Πk)) | Π0 = π

]

= E

[
∞∑

k=0

c̃(Πk, µ
∗(Πk)) | Π0 = π

]
(5.11)
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The DP that solves Eqn. 5.11 is given by Bellman’s equation as follows

J∗(π) = min
{
c̃(π, 1), c̃(π, 0) + E

[
J∗
(
Φ
(
π, 0,X

) )]
︸ ︷︷ ︸

AJ∗(π)

}

=: min

{
λf · π0, (1− π0) + AJ∗(π)︸ ︷︷ ︸

BJ∗(π)

}
(5.12)

We see from Eqn. 5.12 that the optimal stopping time τMinD is given by

τMinD = inf {k > 0 : λf · Πk,0 6 (1− Πk,0) + AJ∗(Πk)} . (5.13)

We now show the structural properties of J∗ in the following theorem.

Theorem 5.1 J∗(π) is concave in π.

We provide the detection delay analysis as α → 0, in the following theorem.

Theorem 5.2 For any stopping rule τ with PFA(τ) 6 α, as α → 0,

Ek1,k2 [τ − k1 | τ > k1] >
| ln(α)|
| ln(ρ00)|

(1 + o(1)) , (5.14)

where the o(1) term goes to 0 as α → 0. As the PFA constraint α → 0, the number

of samples required for detection becomes large. However, the system remains in the

in–change state only for a finite amount of time, and hence, stopping occurs due to the

samples in the out–of–change state.

From Theorem 5.2, it is clear that the observations are not required for optimal

detection. Let us now consider the following ad hoc detection rule which stops at time

τ adhoc when the PFA constraint is met based on the distribution of the change time T .

τ adhoc := inf {k : P {T > k} 6 α}

= inf

{
k :

∞∑

k′=k+1

ρk
′−1

00 ρ01 6 α

}
.
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Note that

∞∑

k=τ adhoc+1

ρk−1
00 ρ01 6 α

=⇒ ρτ
adhoc

00 6 α

=⇒ τ adhoc ln(ρ00) 6 ln(α)

=⇒ τ adhoc >
ln(α)

ln(ρ00)

Thus, Ek1,k2

[
τ adhoc − k1 | τ adhoc > k1

]
>

| ln(α)|
| ln(ρ00)|

− k1. Also, note that τ
adhoc ∈ ∆(α), and

as α → 0, the mean detection delay of τ adhoc is no worse than that given by Theorem 5.2.

Hence, τ adhoc is asymptotically delay optimal.

5.4 Asymptotic Minimal Detection Delay Policy (A–MinD)

In the previous section, we have obtained MinD, an optimal transient change detection

procedure whose mean detection delay is the smallest in the class of policies having

PFA 6 α. From Eqn. 5.13, we see that at any time k, MinD requires the computation

of AJ∗(Πk). We would be interested in a simpler detection rule based on a constant

threshold (i.e., the threshold Γ is a constant). In this section, we obtain a change

detection procedure A−MinD which is obtained as a limiting policy of MinD as the

average time for the change to occur goes to ∞, i.e., when ρ01 → 0. Also, we show that

the stopping time of A−MinD is a simple (constant) threshold rule.

For each time k, we define the following one–to–one transformation (see [Veeravalli, 2001],

[Raghavan and Veeravalli, 2010])

Qk,θ :=
Πk,θ

ρ01Πk,0
, θ = 0, 1, 2. (5.15)

Note that Qk,0 :=
1
ρ01

and Qk,0+Qk,1+Qk,2 =
1

ρ01Πk,0
. Hence, the inverse transformation
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for θ = 1, 2, is given by

Πk,θ =
Qk,θ

Qk,0 +Qk,1 +Qk,2

,

=
Qk,θ/Qk,0

(Qk,0 +Qk,1 +Qk,2)/Qk,0
,

=
ρ01Qk,θ

1 + ρ01(Qk,1 +Qk,2)
. (5.16)

The last step follows as Qk,0 := 1/ρ01. It can be showed that the transformed statistic

Qk,θ can also be computed recursively as follows.

Theorem 5.3 The statistic Qk,θ for θ = 1, 2, can be computed in a recursive manner as

Qk,θ =
Lk,θ

ρ00

(
2∑

θ′=0

Qk−1,θ′ρθ′θ

)
(5.17)

where Lk,θ is the likelihood–ratio between fθ(Xk) and f0(Xk) and is given by Lk,θ =
fθ(Xk)
f0(Xk)

,

and f2(Xk) = f0(Xk).

Using this transformation, we can show that the stopping rule MinD given in Eqn. 5.13

can be written as

τMinD = inf

{
k : Qk,1 +Qk,2 >

1− AJ∗(Qk)

ρ01(λf + AJ∗(Qk))

}
(5.18)

We now consider the asymptotic behaviour of the procedure τMinD as the probability of

occurrence of change goes to zero.

Theorem 5.4 [[Raghavan and Veeravalli, 2010]] In the case of rare events, i.e., as

ρ01 → 0, the optimal stopping rule τMinD converges to the following simple threshold rule

τA−MinD = inf {k : Qk,1 +Qk,2 > Γ}

where the threshold Γ is chosen such that the PFA constraint is met.
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5.5 Maximum Probability of Detection Policy (MaxP)

In this section, we consider the problem P5.2 defined in Eqn. 5.3. Recall that at time

k, Θk ∈ {0, 1} is the state of nature and Ak ∈ A = {0, 1} is the decision (or control or

action) chosen by the decision maker after having observed Xk. Let τ be a stopping time

with respect to the sequence I1, I2, · · · , where we recall that Ik =
[
X[1:k], A[0:k−1]

]
is the

information available to the decision maker at the beginning of slot k. For a state–action

pair (θ, a), at any time k, we define the gain function gk : {0, 1} × A → R+ as follows.

For time k 6 τ ,

gk(θ, a) :=





0, if θ = 0, a = 0

0, if θ = 1, a = 0

0, if θ = 2, a = 0

−λf , if θ = 0, a = 1

1, if θ = 1, a = 1

0, if θ = 2, a = 1

(5.19)

and for k > τ , gk(·, ·) := 0. Note that the gain is −λf if the stopping happens in state 0

and is 1 if the stopping happens in state 1. Thus, for any k 6 τ , we have

gk(Θk, Ak) :=
[
−λf1{Θk=0} + 1{Θk=1}

]
1{Ak=1}. (5.20)

We are interested in obtaining an optimum stopping time τ that maximises the

probability of detection subject to a constraint on the probability of false alarm.

max
τ

P {T 6 τ < E} (5.21)

subject to P {τ < T} 6 α.

Recall that λf is the cost of false alarm. We are interested in obtaining a stopping time
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τMaxP that maximises the expected gain (Bayesian reward), i.e.,

G(τMaxP) := max
τ

E
[
−λf · 1{τ<T} + 1{T6τ<E}

]

= max
τ

E
[
−λf · 1{Θτ=0} + 1{Θτ=1}

]

= max
τ

E[gτ (Θτ , Aτ )]

= max
τ

E

[
τ∑

k=0

gk(Θk, Ak)

]

= max
τ

E

[
∞∑

k=0

gk(Θk, Ak)

]

= max
τ

∞∑

k=0

E[gk(Θk, Ak)] (by monotone convergence theorem)(5.22)

Note that λf is a Lagrange multiplier and is chosen such that the false alarm constraint

is satisfied with equality, i.e., PFA(τ
MinD) = α (see [Shiryaev, 1978]). Also, as before, we

note that for every stopping time τ , there exists a policy µ = (µ1, µ2, · · · ) such that for

any k, when τ = k, Ak′ = µk′(Ik′) = 0 for all k′ < k and Ak′ = µk′(Ik′) = 1 for all k′ > k.

Hence, the optimal Bayesian gain given by Eqn. 5.22 becomes

G(τMaxP) = max
τ

∞∑

k=0

E[gk(Θk, Ak)] = max
µ

∞∑

k=0

E[E[gk(Θk, Ak) | Ik]]

= max
µ

∞∑

k=0

E[E[gk(Θk, µk(Ik)) | Ik]]

= max
µ

E

[
∞∑

k=0

E[gk(Θk, µk(Ik)) | Ik]
]
(5.23)

where the last step follows from monotone convergence theorem. From Eqn. 5.20, we see

that

gk(Θk, µk(Ik)) = −λf1{Θk=0} · 1{µk(Ik)=1} + 1{Θk=1} · 1{µk(Ik)=1}
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and hence,

E[gk(Θk, µk(Ik)) | Ik] = E
[
−λf1{Θk=0} · 1{µk(Ik)=1} + 1{Θk=1} · 1{µk(Ik)=1} | Ik

]

=
(
−λf · E

[
1{Θk=0} | Ik

]
+ E
[
1{Θk=1} | Ik

])
· 1{µk(Ik)=1}

= (−λf · Πk,0 +Πk,1) · 1{µk(Ik)=1}.

From the above equation, it is easy to see that at time k, a sufficient statistic ([Bertsekas, 2005])

is the probability vector Πk = [Πk,0,Πk,1,Πk,2] for this problem also. We define the

reward function g̃ : S × A → R+ as

g̃(s, a) =





−λf · p0 + p1, if s = [p0, p1, p2] ∈ P, a = 1

0, otherwise.
(5.24)

Since Πk is a sufficient statistic for Ik, for any policy µk there exists a corresponding

policy µ̃k such that µ̃k(Πk) = µk(Ik), and hence, Eqn. 5.22 can be written as

G(τMaxP) = max
µ

E

[
∞∑

k=0

E[gk(Θk, µk(Ik)) | Ik]
]

= max
µ̃

E

[
∞∑

k=0

g̃(Πk, µ̃k(Πk))

]
(5.25)

The tuple (S,A,Φ(·, ·, ·), g) defines a Markov decision process (MDP). We thus solve

the problem defined in Eqn. 5.21 as follows. Since the one stage cost function and the

transition kernel are time–invariant, it is sufficient to look for stationary policies. Let

µ̃ : S → A be a stationary policy. Then the total reward on using the policy µ̃ is given

by

Jµ̃(π) = E

[
∞∑

k=0

g̃(Πk, µ̃(Πk)) | Π0 = π

]
. (5.26)
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Let µ∗ : S → A be an optimal stationary policy. The optimal reward is then given by

J∗(π) = max
µ̃

E

[
∞∑

k=0

g̃(Πk, µ̃(Πk)) | Π0 = π

]

= E

[
∞∑

k=0

g̃(Πk, µ
∗(Πk)) | Π0 = π

]
(5.27)

The DP that solves Eqn. 5.27 is given by Bellman’s equation as follows

J∗(π) = max
{
g̃(π, 1), g̃(π, 0) + E

[
J∗
(
Φ
(
π, 0,X

) )]
︸ ︷︷ ︸

AJ∗(π)

}

=: max

{
− λf · π0 + π1, E

[
J∗
(
Φ
(
π, 0,X

) )]
︸ ︷︷ ︸

AJ∗(π)

}
(5.28)

We now show the structural properties of J∗ in the following theorem.

Theorem 5.5 J∗(π) is convex in π.

Also, it is easy to see from Eqn. 5.28 that the optimal stopping rule τMaxP is given by

τMaxP = inf {k > 0 : −λf · Πk,0 +Πk,1 > AJ∗(Πk)} . (5.29)

5.6 Numerical Results

In this section, we study the mean detection delay, ADD and the probability of detection,

PD performance of the transient change detection procedures, MinD, A–MinD, and MaxP.

We compare the ADD and the PD performance with the well known CUSUM procedure

([Basseville and Nikiforov, 1993]). Note that A−MinD and CUSUM are simple threshold

rules whereas the procedures MinD and MaxP require the solution of the DPs defined in

Eqns. 5.12 and 5.28.

We assume the following parameters for numerical studies, f0 ∼ N (0, 1), f1 ∼
N (1, 1), ρ01 = 0.01, ρ12 = 0.1, and ρ = 0. We study the ADD, ÃDD := E [(τ − Γ1)

+|Θτ = 1]

and the PD performance of all the detection procedures we propose, for various values of
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Figure 5.3: Mean detection delay (ADD) vs probability of false alarm (PFA) for f0 ∼
N (0, 1), f1 ∼ N (1, 1), ρ01 = 0.01, ρ12 = 0.1, and ρ = 0.

PFA. We obtain the optimal policies using the value–iteration technique (see [Bertsekas, 2000a]),

the number of iterations being taken as 1000. For each of the optimal policies we thus

obtained, we obtain the ADD , ÃDD, and PD for a range of PFA by simulation, the number

of simulation runs being made is 100. Thus, we obtain the ADD , ÃDD, and PD for a

range of PFA and plot the results in Figs. 5.3 – 5.5. Our numerical results show that

while the MinD procedure achieves the least ADD across all events (whether stopped in

the in–change state or in the out–of–change state), the CUSUM procedure outperforms

the MinD procedure when we consider only the events that are stopped in the in–change

state. Also, we see from Figs. 5.3–5.5 that the ADD of MinD is approximately equal to

that of A−MinD. We also observe that the MaxP procedure results in the largest value

of PD as expected.
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Figure 5.4: Mean detection delay of events stopped in state 1 (ÃDD) vs probability of
false alarm (PFA) for f0 ∼ N (0, 1), f1 ∼ N (1, 1), ρ01 = 0.01, ρ12 = 0.1, and ρ = 0.
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Figure 5.5: Mean probability of detection (PD) vs probability of false alarm (PFA) for
f0 ∼ N (0, 1), f1 ∼ N (1, 1), ρ01 = 0.01, ρ12 = 0.1, and ρ = 0.
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5.7 Conclusion

We consider the change detection problem when the event that cause the change is

transient (i.e., not persistent). For a given constraint on the probability of false alarm,

we model the transient change detection problem as an MDP and obtain the following

Bayesian transient change detection procedures: 1) MinD, 2) A−MinD and 3) MaxP.

We show that at any time k, the posterior probability vector (of states) up to time

k is sufficient to detect the transient change. We also show some structural results of

these optimum policies. Also, we compare the transient change detection procedures,

MinD, A−MinD, and MaxP with the well known CUSUM procedure. Our numerical

results show that the ADD of the MinD procedure is approximately equal to that of

the A−MinD procedure, the later procedure being much easier to implement. We also

showed that the MaxP procedure results in the largest value of PD as expected. Finally,

we observed that ÃDD is the smallest for the CUSUM procedure.

5.8 Appendix

Proof of Theorem 5.1

We show by induction that J∗ is concave in p. The value functions for the DP defined

in Eqn. 5.12 are given by

V0(p) = p0

Vk+1(p) = min
{
p0, c(1− p0) + EVk

(
Φ
(
p, 0,X

) )}
, k = 1, 2, · · ·

V0, being an affine function, is concave in p. For some k > 1, assume that Vk is concave

in p. Let p = [p0, p1, p2] and DN = (p0ρ00 + p1ρ12 + p2) f0(x) + (p0ρ01 + p1ρ11) f1(x).
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Then

Vk(p) = inf
(a0,a1,a2,a3)∈C

{a0 + a1p0 + a2p1 + a3p2} (see [Rockafellar, 1997])

=⇒ Vk

(
Φ (p, 0,X)

)
· DN = inf

a0,a1,a2,a3∈C
{an affine function }

where C := {(a0, a1, a2, a3) ∈ R4 : a0 + a1p0 + a2p1 + a3p2 > Vk(p)}. Since integration is

a linear operator, the above implies that EVk

(
Φ (p, 0,X)

)
is concave in p or Vk+1(p) is

concave in p. Hence, in the same way as was shown in the Appendix of Chapter 3, we

can show that J∗(p) and AJ∗(p) are concave in p.

Proof of Theorem 5.2

The proof of this theorem is along the same lines as in [Tartakovsky and Veeravalli, 2005].

E
[
τ − T

τ > T
]

=

∞∑

k1=0

∞∑

k2=k1+1

P {T = k1, E = k2 | τ > T} · E
[
τ − T

τ > T, T = k1, E = k1
]

=

∞∑

k1=0

∞∑

k2=k1+1

P {T = k1, E = k2 | τ > T} · Ek1,k2

[
τ − k1

τ > k1
]
.

Thus, to obtain a lower bound for E
[
τ − T

τ > T
]
, it is sufficient to obtain a lower

bound for Ek1,k2

[
τ − k1

τ > k1
]
.
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For any D > 0, we have

Ek1,k2

[
τ − k1

τ > k1
]

=
Ek1,k2 [(τ − k1)

+]

Pk1,k2 {τ > k1}

>
Ek1,k2 [(τ − k1)

+ | τ − k1 > D] · Pk1,k2 {τ − k1 > D}
Pk1,k2 {τ > k1}

>
D · Pk1,k2 {τ > k1 +D}

Pk1,k2 {τ > k1}

= D
Pk1,k2 {τ > k1} − Pk1,k2 {k1 6 τ < k1 +D}

Pk1,k2 {τ > k1}

= D

[
1− Pk1,k2 {k1 6 τ < k1 +D}

Pk1,k2 {τ > k1}

]

= D

[
1− Pk1,k2 {k1 6 τ < k1 +D}

1− Pk1,k2 {τ < k1}

]

= D

[
1− Pk1,k2 {k1 6 τ < k1 +D}

1− P∞ {τ < k1}

]
, (5.30)

where the equality in the last step, Pk1,k2 {τ < k1} = P∞ {τ < k1} is justified by the

following argument. The event {τ < k1} = {τ 6 k1 − 1} ∈ σ
(
X[1:k1−1]

)
, and since

T = k1, Xk ∼ f0 for all k 6 k1 − 1, we have the equality. Also, note that τ ∈ ∆(α).

Hence,

P {τ < T} 6 α

⇐⇒ P {τ < T, T > k1}+ P {τ < T, T 6 k1} 6 α

=⇒ P {τ < T, T > k1} 6 α

=⇒ P {τ < k1, T > k1} 6 α (∵ {τ < k1, T > k1} ⊆ {τ < T, T > k1})

=⇒ P {T > k1} · P
{
τ < k1

T > k1
}

6 α

=⇒ P {T > k1} · P∞ {τ < k1} 6 α (∵ the same argument as above)

=⇒ P {T > k1} · P∞ {τ < k1} 6 α

=⇒ P∞ {τ < k1} 6
α

ρk100
, (5.31)
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From Eqns. 5.30 and 5.31, we have

Ek1,k2

[
τ − k1

τ > k1
]

> D

[
1− Pk1,k2 {k1 6 τ < k1 +D}

1− P∞ {τ < k1}

]

> D


1− Pk1,k2 {k1 6 τ < k1 +D}

1− α

ρ
k1
00


 . (5.32)

We are interested in obtaining a lower bound for the delay, or an upper bound for

Pk1,k2 {k1 6 τ < k1 +D}. We use the change of measure argument to obtain the probability,

P∞ {k1 6 τ < k1 +D} from Pk1,k2 {k1 6 τ < k1 +D}, and use the upper bound for

P∞ {k1 6 τ < k1} from Eqn. 5.31. We define the sum of the log–likelihood ratios of the

observations up to k, when the change points are T = k1, E = k2, as

Λ
(k1,k2)
k =

min{k2−1,k}∑

k′=k1

ln

(
f1(Xk′)

f0(Xk′)

)
.

Note that for k < k1, Λ
(k1,k2)
k = 0, and for k > k2, Λ

(k1,k2)
k = Λ

(k1,k2)
k2

. Hence,

1

k
Λ

(k1,k2)
k → 0,Pk1,k2 a.s. as k → ∞.

For any C > 0,

P∞ {k1 6 τ < k1 +D} = E∞

[
1{k16τ<k1+D}

]

= Ek1,k2

[
1{k16τ<k1+D}e

−Λ
(k1,k2)
τ

]
(∵ by change of measure argument)

> Ek1,k2

[
1{

k16τ<k1+D,Λ
(k1,k2)
τ <C

}e−Λ
(k1,k2)
τ

]

> e−C · Ek1,k2

[
1{

k16τ<k1+D,Λ
(k1,k2)
τ <C

}
]

= e−C · Pk1,k2

{
k1 6 τ < k1 +D,Λ(k1,k2)

τ < C
}

> e−C · Pk1,k2

{
k1 6 τ < k1 +D, max

k16n<k1+D
Λ(k1,k2)

n < C

}

> e−C ·
[
Pk1,k2 {k1 6 τ < k1 +D} − Pk1,k2

{
max

k16n<k1+D
Λ(k1,k2)

n > C

}]
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Therefore, for any D and C,

Pk1,k2 {k1 6 τ < k1 +D} 6 Pk1,k2

{
max

k16n<k1+D
Λ(k1,k2)

n > C

}
+ eC · P∞ {k1 6 τ < k1 +D}

We choose D = Dα in such a way that Dα → ∞ as α → 0, and then we choose C = ǫDα

for some ǫ > 0. For any ǫ > 0, we have

Pk1,k2

{
1

Dα
max

k16n<k1+Dα

Λ(k1,k2)
n > ǫ

}
→ 0, as α → 0

or Pk1,k2

{
max

k16n<k1+Dα

Λ(k1,k2)
n > ǫDα

}
= o(1), α → 0

and eǫDα · P∞ {k1 6 τ < k1 +Dα} 6 eǫDα · P∞ {τ < k1 +Dα}

6 eǫDα · α

ρ
k1+⌈Dα⌉
00

6 eǫDα · α

ρk1+1+Dα

00

=
1

ρk1+1
00

α

exp ((ln(ρ00)− ǫ)Dα)

(5.33)

Therefore, choosing Dα = q ln(α)
ln(ρ00)−ǫ

for some 0 < q < 1, we have

Pk1,k2 {k1 6 τ < k1 +Dα} 6 o(1) +
α1−q

ρk1+1
00

=
o(1) + α1−q

ρk1+1
00

(5.34)

Therefore, from Eqn. 5.30, we have

Ek1,k2

[
τ − k1

τ > k1
]

>
q ln(α)|

ln(ρ00)− ǫ
·
[
1− o(1) + α1−q

ρk1+1
00 − αρ00

]
.

Hence, as α → 0, we have

Ek1,k2

[
τ − k1

τ > k1
]

>
q ln(α)

ln(ρ00)− ǫ
· [1− o(1)] , as α → 0.
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Note that ǫ > 0 and 0 < q < 1 can be arbitrarily chosen and hence,

Ek1,k2

[
τ − k1

τ > k1
]

>
ln(α)

ln(ρ00)
· [1− o(1)] , as α → 0.

Proof of Theorem 5.3

Recall that

Πk,s =

∑
i∈S Πk−1,iρisfs(Xk)∑

j∈S

∑
i∈S Πk−1,iρijfj(Xk)

,

:=
Ns∑
j∈S Nj

where f2 = f0 and

Ns =

2∑

i=0

Πk−1,iρisfs(Xk),

=

(
2∑

i=0

Πk−1,iρis

)
· Lk,s · f0(Xk),

=

(
2∑

i=0

ρ01Qk−1,iρis

1 + ρ01
∑2

j=1Qk−1,j

)
· Lk,s · f0(Xk), (From Eqn. 6)

Therefore,

Πk,s =

(∑2
i=0 ρ01Qk−1,iρis

)
· Lk,s · f0(Xk)∑2

j=0

(∑2
i=0 ρ01Qk−1,iρij

)
· Lk,j · f0(Xk)

,

=

(∑2
i=0Qk−1,iρis

)
· Lk,s∑2

j=0

(∑2
i=0Qk−1,iρij

)
· Lk,j

,
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Therefore,

Qk,s =

(∑2
i=0Qk−1,iρis

)
· Lk,s

ρ01Πk,0

∑2
j=0

(∑2
i=0Qk−1,iρij

)
· Lk,j

,

=

(∑2
i=0Qk−1,iρis

)
· Lk,s

ρ01
Πk−1,0ρ00Lk,0f0(Xk)∑

j∈S
Nj

∑2
j=0

(∑2
i=0Qk−1,iρij

)
· Lk,j

,

=

(∑2
i=0Qk−1,iρis

)
· Lk,s

ρ00ρ01
Πk−1,0f0(Xk)

∑
j∈S

∑
i∈S ρ01Qk−1,iρijLk,jf0(Xk)

1+ρ01(Qk−1,1+Qk−1,2)

∑2
j=0

(∑2
i=0Qk−1,iρij

)
· Lk,j

,

=

(∑2
i=0Qk−1,iρis

)
· Lk,s

ρ00

=
Lk,s

ρ00

(
2∑

i=0

Qk−1,iρis

)

Q0,s in terms of prior Π0,s:

Q0,0 =
1

ρ01
,

Q0,1 =
Π0,1

ρ01Π0,0

=
P{T = 0, E > 0}
ρ01P{T > 0}

=
ρ

ρ01(1− ρ)

Q0,2 =
Π0,2

ρ01Π0,0

=
P{T = 0, E = 0}
ρ01P{T > 0} ,

= 0

Proof of Theorem 5.5
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Let p = [p0, p1, p2]. If V (p) is a convex function then

V (x) = sup
(a,b)∈C

a0 + a1p0 + a2p1 + a3p2

where C := {(a0, a1, a2, a3) ∈ R4 : a0+a1p0+a2p1+a3p2 6 V (p)} (see [Rockafellar, 1997]).
Also the point–wise maximum of two convex functions is convex. Using these facts,

Theorem 5.5 can be proved along the same lines as that of Theorem 5.1.



Part II

Event Detection in Large Extent

Networks
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Chapter 6

Quickest Detection and Localisation

of Events in Large Extent Networks

6.1 Introduction

In the previous chapters, we were concerned with event detection in small extent networks

where the event affects all the sensor nodes in the same way. The event is considered as

a source of a signal of some type (or “modality”), e.g., infrared, acoustic, etc., and hence,

the measurement at a sensor node corresponds to the sum of the signal strength that the

sensor receives from the event (which, in general, depends on the distance between the

sensor node and the event), and the inherent sensor noise. In a small extent network,

all the sensors cover the region of interest (ROI), and hence, all the sensors receive an

appreciable signal strength from the event. We assumed, in Chapters 3, 4, and 5, that

all the sensors receive the same signal strength. However, in a large extent network, the

ROI is large compared to the coverage region of a sensor. Thus, in this case, an event

affects only the sensors in the vicinity of where it occurs.

In this chapter, we consider the problem of detecting and locating an event, in a

large extent network. This problem is also called change detection and isolation (see

[Nikiforov, 1995]). Since the ROI is large, a large number of sensors are deployed to

cover the ROI, making a centralised solution infeasible. In our work, we seek distributed

141
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algorithms for detecting and locating an event, with small detection delay, subject to a

constraint on false alarm and false isolation. The distributed algorithms require only

local information from the neighborhood of each node.

6.1.1 Summary of Contributions

1. We formulate the event detection/isolation problem in a large extent network as a

worst case detection delay minimisation problem subject to a mean time to false

alarm and mean time to false isolation constraints. Because of the large extent

network, the postchange distribution is unknown, and the latter is a novel aspect

of our problem formulation.

2. We propose distributed detection/isolation procedures MAX, ALL, and HALL

(Hysteresis modifiedALL) for large extent wireless sensor networks. The distributed

procedures MAX and ALL are extensions of the decentralised procedures MAX

[Tartakovsky and Veeravalli, 2003] and ALL [Mei, 2005], [Tartakovsky and Veeravalli, 2008],

which were developed for small extent networks. The distributed procedures MAX,

ALL, and HALL are computationally less complex and more energy–efficient compared

to the centralised procedure given by Nikiforov [Nikiforov, 1995] (which can be

applied only to the Boolean sensing model).

3. We analyse the supremum worst case detection delay (SADD) of MAX, ALL, and

HALL when the mean time to false alarm (TFA) and the mean time to false isolation

(TFI) are at least as large as a certain threshold γ. For the case of the Boolean

sensing model, we compare the detection delay performance of the these distributed

procedures with that of Nikiforov’s procedure [Nikiforov, 1995] (a centralised procedure

which is shown to be asymptotically delay optimal) and show that the distributed

procedures ALL and HALL are asymptotically order optimal.
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6.1.2 Discussion of Related Literature

The problem of sequential change detection/isolation with a finite set of postchange

hypotheses was studied in a centralised setting by Nikiforov [Nikiforov, 1995], andMalladi

and Speyer [Malladi and Speyer, 1999]. In [Nikiforov, 1995], Nikiforov formulated the

non–Bayesian change detection/isolation problem and proposed a procedure which is

shown to be worst case detection delay optimal, as min{TFA,TFI} goes to ∞. It is to

be noted that the decision statistic of Nikiforov’s procedure can not be computed in

a recursive manner, and hence, the computational complexity of Nikiforov’s procedure

is high. In [Malladi and Speyer, 1999], Malladi and Speyer studied a Bayesian change

detection/isolation problem and obtained a mean delay optimal centralised procedure

which is a threshold based rule on the a posteriori probability of change corresponding

to each post–change hypothesis.

Centralised procedures incur high communication costs and distributed procedures

would be desirable. In this chapter, we study distributed procedures based on CUSUM

detectors at the sensor nodes where the CUSUM detector at sensor node i is driven only

by the observations made at node i.

The previous work on decentralised change detection [Tartakovsky and Veeravalli, 2003],

[Mei, 2005], [Tartakovsky and Kim, 2006], etc., focuses on collocated networks where

the postchange distribution of observations is known. However, in the case of large

extent networks, we have a change detection/isolation problem where the postchange

distribution of the observations of a sensor node, in general, depends on the distance

between the event and the sensor node which is unknown.

6.1.3 Outline of the Chapter

The rest of the chapter is organised as follows. In Section 6.2, we provide the models

for the occurrence of the event and the observations made by the sensors. We define

the detection–coverage region of a sensor and partition the ROI into a minimum number

of subregions A1,A2, · · · ,AN where each subregion Ai is detection–covered by a unique
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set of sensors Ni. We also define the detection subregion and the influence subregion

of a set of sensor nodes, and motivate the problem by an example. In Section 6.3,

we define the change detection/isolation problem as a multi–hypothesis testing problem

where each hypothesis Hi corresponds to the detection of the event by the set of sensor

nodes Ni. We define the performance metrics (SADD, TFA, and TFI), and formulate

the change detection/isolation problem. In Section 6.4, we propose distributed event

detection/isolation procedures MAX, ALL and HALL which make a decision based on the

local decisions of all sensor nodes in each set of sensors Ni. We study the SADD, TFA, and

the TFI performance of the distributed procedures, and discuss the asymptotic minimax

delay optimality of these procedures. In Section 6.5, we provide numerical results and

we conclude in Section 6.6.

6.2 System Model

Let A ⊂ R2 be the region of interest (ROI) in which a WSN has to be engineered for

event detection. We deploy n sensor nodes in the region A. We assume that all nodes are

equipped with the same type of sensor (e.g., acoustic or passive infrared). Let ℓ(i) ∈ A
be the location of node i, and define ℓ := [ℓ(1), ℓ(2), · · · , ℓ(n)]. We consider a discrete–time

system, with the basic unit of time being one slot. The slots are indexed by non–negative

integers. We assume that a slot is of unit length and that slot k is defined by the time

interval [k, k + 1). The sensor nodes are assumed to be time–synchronised (see, for

example, [Solis et al., 2006]), and at the beginning of every slot k > 1, each sensor node

i samples its environment and obtains the observation X
(i)
k ∈ R.

6.2.1 Event Model

An event occurs at an unknown time T ∈ Z+ and at an unknown location ℓe ∈ A.

In this work, we consider only stationary (and permanent or persistent) point events,

i.e., an event occurs at a point in the region of interest, and having occurred, stays

there forever. Examples that would motivate such a model are 1) gas leakage in the
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wall of a large storage tank, 2) excessive strain at a point in a large flat structure.

[Polunchenko and Tartakovsky, 2009] and [Premkumar et al., 2010] provide studies of

change detection problems in which the event stays only for a finite random amount

of time.

6.2.2 Sensing Model

An event is viewed as a source of some physical signal that can be sensed by the sensor

nodes that have been deployed. Let he be the signal strength of the event1. A sensor at a

distance d from the event senses a signal heρ(d)+W , where W is random (sensing) zero

mean noise and ρ(d) is the model for distance dependent loss in signal strength which is

a decreasing function of the distance d. Note that we have assumed an isotropic distance

dependent loss model, whereby the mean signal received by all sensors at a distance d

(from the event) is the same. We see some examples below for the sensing models.

Example 6.1 The Boolean model (see [Liu and Towsley, 2004]): In this model, the

signal strength that a sensor receives is the same (which is given by µ1) when the event

occurs within a distance of rs from the sensor and is 0 otherwise. Thus, for a Boolean

sensing model2,

ρ(d) =





1, if d 6 rs

0, otherwise.

Example 6.2 The power law path–loss model (see [Liu and Towsley, 2004]) is given

by

ρ(d) = d−η,

1In case, the signal strength of the event is not known, but is known to lie in an interval [h, h], we
work with he = h as this corresponds to the least Kullback–Leibler divergence between the “event not
occurred” hypothesis and the “event occurred” hypothesis. See [Tartakovsky and Polunchenko, 2008] for
change detection with unknown parameters for a collocated network.

2The detection region of a sensor under the Boolean sensing model is a disc of radius rs. One can
generalise the notion of the Boolean model by having an arbitrary shape for the detection region of a
sensor. This model can be useful in studying sensors with directional sensitivity.
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for some path loss exponent η > 0.

In Example 2, we see that the signal from an event varies continuously over the region.

Hence, unlike the Boolean model, there is no clear demarcation between the sensors

that observe the event and those that do not. Thus, in order to facilitate the design of

a distributed detection scheme with some performance guarantees, in the remainder of

this section, we will define certain regions around each sensor.

6.2.3 Detection Region and Detection Partition

Definition 6.1 The Detection Range of a sensor rs, is defined as the distance from

the sensor within which the occurrence of an event induces a signal level of at least

µ1 > 0, i.e.,

rs := sup {d : heρ(d) > µ1} .

The idea is that if an event occurs in the detection regions of some sensors then those

sensors, seeing a large signal, can rapidly detect the change. We will see that µ1 is a

design parameter that defines the acceptable detection delay. For a given signal strength

he, a large value of µ1 results in a small detection range rs (as ρ(d) is non–increasing in

d). Also, we will see in Section 6.4.4 (Eqn. (6.10)) that the detection delay (SADD) of the

distributed change detection/isolation procedures we propose, depends on the detection

range rs, and that a small rs (i.e., a large µ1) results in a small detection delay (SADD).

It will be clear from the following discussion that a small detection range rs requires

more sensors to be deployed.

We say that a location x ∈ ROI is detection–covered by sensor node i, if x lies within

the detection range of sensor i, i.e., if ‖ℓ(i) − x‖ 6 rs, where we recall that ℓ(i) is the

location of the sensor node i. For any sensor node i, let S(i) ⊆ A be the detection–coverage

region of node i, i.e., any point x ∈ S(i) is detection–covered by sensor node i. Thus,

S(i) = {x ∈ A : ‖ℓ(i) − x‖ 6 rs} (see Fig. 6.1).
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A3
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A6

A
A2

A5

A1

Figure 6.1: Partitioning of A in a large WSN by detection regions: A simple
example of partitioning of A in a large WSN. The coloured solid circles around each
sensor node denote their detection regions. The four sensor nodes, in the figure, divide
the ROI, indicated by the square region, into regions A1, · · · ,A6 such that region Ai is
detection–covered by a unique set of sensors Ni.

We assume that the sensor deployment is such that every x ∈ A is detection–covered

by at least one sensor (we see that this is the case in the example in Fig. 6.1). For each

x ∈ A, define N (x) to be the largest set of sensors by which x is detection–covered,

i.e., N (x) := {i : x ∈ S(i)}. Let C(N ) be the collection of all such sensor–sets, i.e.,

C(N ) = {N (x) : x ∈ ROI}. Note that C(N ) is a finite set and it can have at most 2n− 1

elements (since all points in the ROI are detection–covered). Let N be the number of

elements of C(N ). For each Ni ∈ C(N ), we denote the corresponding detection–covered

region by Ai = A(Ni) := {x ∈ ROI : N (x) = Ni}. Evidently, the Ai, 1 6 i 6 N ,

partition the ROI. We say that the ROI is detection–partitioned into a minimum number

of subregions, A1,A2, · · · ,AN , such that the subregion Ai is detection–covered by (each

sensor in) a unique set of sensors Ni, and Ai is the maximal detection–covered region of

Ni, i.e., ∀i 6= i′, Ni 6= Ni′ and Ai ∩ Ai′ = ∅. See Fig. 6.1 for a four sensor example.

6.2.4 Measurement Model

Before change, i.e., for k < T , the observation X
(i)
k is just the zero mean sensor noise

W
(i)
k , the probability density function (pdf) of which is denoted by f0(·). After change,

i.e., for k > T and the location of the event is ℓe, the observation of sensor i is given
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by heρ(dei) + W
(i)
k where dei := ‖ℓ(i) − ℓe‖ is the distance of sensor node i from the

event. We denote the postchange pdf of X
(i)
k by f1(·; dei). The noise processes {W (i)

k }
are independent and identically distributed (iid) across time and across sensor nodes.

6.2.5 CUSUM as the Local Detector

We shall propose distributed procedures for change detection/isolation based on using the

CUSUM statistic [Basseville and Nikiforov, 1993], at each node. CUSUM is a non–Bayesian

change detection procedure which is designed for single prechange and postchange pdfs.

We outline the CUSUM procedure as follows. At each time k > 1, the CUSUM statistic

Sk is given by

Sk := (Sk−1 + Zk)
+ (6.1)

where S0 := 0 and Zk is the log likelihood–ratio (LLR) of the observation Xk between

the postchange and the prechange pdfs. The CUSUM rule is to declare the change (in

the distribution of the observations) when the statistic Sk crosses a threshold c, i.e.,

τCUSUM = inf {k : Sk > c} (6.2)

where the threshold c is chosen such that the mean time to false alarm exceeds a certain

threshold.

We compute a CUSUM statistic at each sensor i based only on the observations of

sensor i, the driving term of which should be the log likelihood–ratio (LLR) of the

observation X
(i)
k defined as Z

(i)
k (dei) := ln

(
f1(X

(i)
k

;dei)

f0(X
(i)
k

)

)
. As the location of the event ℓe

is unknown, the distance of each sensor i from the event, dei is also unknown. Hence,

one cannot work with the pdfs f1(·; dei). We propose to drive the CUSUM at each node

i with Z
(i)
k (rs), where we recall that rs is the detection range of a sensor, i.e., we define

the statistic C
(i)
k as follows.

C
(i)
k :=

(
C

(i)
k−1 + Z

(i)
k (rs)

)+
, k = 1, 2, · · · ,
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and C
(i)
0 := 0. Based on the CUSUM statistic C

(i)
k , sensor i computes a local decision

D
(i)
k ∈ {0, 1}, where 0 represents no–change and 1 represents change. For each set of

sensor nodes Ni that detection partitions the ROI, we define τ (Ni), the stopping time

(based on the local decisions D
(j)
k s for all j ∈ Ni) at which the set of sensors Ni detects

the event. The way we obtain the local decision D
(j)
k from the CUSUM statistic C

(j)
k

varies from rule to rule. Specific rules for local decision and the fusion of local decisions

will be described in Section 6.4. Also, the event is isolated to a region associated with

the sensor set that detects the event, called the influence region, which we define in the

following subsection.

6.2.6 Influence Region

With the local detection statistic being as defined in the previous subsection, let us recall

the two examples in Section 6.2.2. With the Boolean sensing model, after an event occurs,

the CUSUMs of sensors within radius rs of the event can rapidly cross their thresholds,

while the sensors outside this range only observe noise. On the other hand with the

power law path–loss sensing model, where the signal from the event varies continuously,

in Example 2 (Section 6.2.2), the CUSUMs of some of the sensors beyond rs also see a

positive driving term. Lemma 1 shows that for a Gaussian noise model, there is a range

r̄ > rs beyond which the driving term of the CUSUM has a negative mean.

Lemma 6.1 For Gaussian noise (i.e., f0 is Gaussian with mean µ0 and variance σ2),

for some rs > 0, let f1(·; rs) be taken as the postchange pdf in the CUSUM algorithm

being used at a sensor. When the distance–loss function is ρ(d), the mean of the driving

term in the CUSUM statistic C
(i)
k is negative if the event occurs beyond a distance of

r := min {d : 2ρ(d) 6 ρ(rs)}

from the sensor.
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Proof 1 Let Z
(i)
k (d) be the LLR of the observation X

(i)
k between pdfs f1(·; d) and f0, and

let Z
(i)
k (rs) be the LLR between pdfs f1(·; rs) and f0. It is easy to see for Gaussian f0

(and hence for Gaussian f1(·; ·)) that

Ef1(·;d)[Z
(i)
k (rs)] =

(heρ(rs))
2

2σ2

(
2ρ(d)

ρ(rs)
− 1

)
. (6.3)

Thus, Ef1(·;d)[Z
(i)
k (rs)], the mean of the increment that drives CUSUM statistic decreases

with d and hits 0 at r̄ given by r̄ := min{d′ : 2ρ(d′) 6 ρ(rs)}. Thus, Ef1(·;d)[Z
(i)
k (rs)] is

negative when an event occurs at a distance d > r.

We call this r := min {d : 2ρ(d) 6 ρ(rs)} the sensing–range of a sensor. Note that

r̄ > rs. Our viewpoint will be that a sensor can detect an event within an acceptable

delay if it is within the detection–range, but that it can sense the event if it is within the

sensing–range. In the case of the Boolean sensing model, the sensing range is the same

as the detection–range, and is given by r = rs. In the case of the power law path–loss

model, we can show that r = 21/ηrs, which in the case of free–space (i.e., η = 2) is

r̄ =
√
2 rs.

For d > r̄ (i.e., the sensor is at a distance more than the sensing rage from the

event), though the mean of the log–likelihood ratio Z
(i)
k is negative, the CUSUM statistic

{C(i)
k } (being a positive recurrent process) eventually crosses the CUSUM threshold c

with probability 1 ([Meyn and Tweedie, 1993]). Let τ (i) := inf
{
k : C

(i)
k > c

}
be the

time at which the CUSUM statistic C
(i)
k crosses the threshold c. Let TE := Ef(·;d)

[
τ (i)
]

be the expected time that the statistic C
(i)
k takes to cross the threshold c, where Ef(·,d) [·]

is the expectation operator when the change happens at a distance d from sensor i and

the distribution of all observations is f(·; d). We are interested in TE when d > r̄ which

is shown in the lemma below.

Lemma 6.2 For d > r̄, TE > exp(ω0c), where ω0 = 1− 2ρ(d)
ρ(rs)

.
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Figure 6.2: Illustration of the detection range rs, sensing range r̄, and the
influence range R̄: The signal strength of an event and the mean of the driving term
of the CUSUM are plotted as a function of the distance d. At a distance d 6 rs from
the event, the signal strength is at least µ1, and for d > r̄, the mean of the driving term

E
[
Z

(i)
k (rs)

]
< 0.

Proof 2 We recall that τ (i) is the earliest time at which the CUSUM statistic C
(i)
k crosses

a threshold c. From (Eqn. 5.2.79 pg. 177 of) [Basseville and Nikiforov, 1993], we can

show that Ef1(·;d)[τ
(i)] > exp(ω0c) where ω0 is the solution to the equation

Ef1(·;d)

[
eω0Z

(i)
k

(rs)
]
= 0,

which is given by ω0 = 1− 2ρ(d)
ρ(rs)

(see Eqn. (6.3)).

Note that from the definition of r̄, ω0 > 0 for d > r̄. We would be interested in

TE > exp(ω0 · c) for some ω0 > 0.

We now define the influence range of a sensor as follows.

Definition 6.2 Influence Range of a sensor, R, is defined as the distance from the

sensor within which the occurrence of an event can be detected within a mean delay of

exp (ω0c) where ω0 is a parameter of interest and c is the threshold of the local CUSUM

detector. Using Lemma 6.2, we see that R̄ = min{d′ : 2ρ(d′) 6 (1 − ω0)ρ(rs)} (see

Fig. 6.2 for an illustration).

From Lemma 6.2, we see that by having a large value of ω0, the sensors that are

beyond a distance of R̄ from the event take a long time to cross the threshold. However,
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we see from the definition of influence range that a large value of ω0 gives a large influence

range R̄. We will see from the discussion in Section 6.2.7 that a large influence range

results in the isolation of the event to a large subregion of A. On the other hand, from

Section 6.4.6, we will see that a large ω0 increases the time to false isolation, a performance

metric of change detection/isolation procedure, which we define in Section 6.3.

We define the influence–region of sensor i as T (i) := {x ∈ A : ‖ℓ(i) − x‖ 6 R}. For
the Boolean sensing model, R = rs, and hence, S(j) = T (j) for all 1 6 j 6 n, and for the

power law path–loss sensing model, R > rs, and hence, S(j) ⊂ T (j) for all 1 6 j 6 n.

Recalling the sets of sensors Ni, 1 6 i 6 N , defined in Section 6.2.3, we define the

influence region of the set of sensors Ni as the region Bi such that each x ∈ Bi is within

the influence range of all the sensors in Ni, i.e.,

Bi := B(Ni) :=
⋂

j∈Ni

T (j). (6.4)

Note that A(Ni) =

(
⋂

j∈Ni

S(j)

)
⋂
(
⋂

j′ /∈Ni

S(j′)

)
, where S is the complement of the set S,

and S(j) ⊆ T (j). Hence, A(Ni) ⊆ B(Ni). For the power law path–loss sensing model,

S(j) ⊂ T (j) for all 1 6 j 6 n, and hence, A(Ni) ⊂ B(Ni) for all 1 6 i 6 N . For

the Boolean sensing model, A(Ni) = B(Ni) only when Ni = {1, 2, · · · , n}. Thus, for a

general sensing model, A(Ni) ⊆ B(Ni). We note here that in the Boolean and the power

law path loss models, an event which does not lie in the detection subregion of Ni, but

lies in its influence subregion (i.e., ℓe ∈ B(Ni)\A(Ni)) can be detected due to Ni because

of the stochastic nature of the observations; in the power law path loss sensing model,

this is also because of the difference in ρ(dei) between different sensors, where we recall

that dei is the distance of the event from sensor i, and ρ(·) is the distance dependent loss
function.

In Section 6.3, we formulate the problem of quickest detection of an event and isolating

the event to one of the influence subregions B1,B2, · · · ,BN under a false alarm and false

isolation constraint.
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Figure 6.3: Influence and detection regions: A simple example of partitioning of A
in a largeWSN. The coloured solid circles around each sensor node denote their detection
regions. The four sensor nodes, in the figure, divide the ROI, indicated by the square
region, into regions A1, · · · ,A6 such that region Ai is detection–covered by a unique set
of sensors Ni. The dashed circles represent the influence regions. In the Boolean model,
the influence region of a sensor coincides with its detection region.

Remark: At this point, we recall that the definition of the three ranges, detection,

sensing, and influence, have involved two design parameters µ1 and ω0 which can be

used to “tune” the desired performance of the distributed detection schemes that we

develop.

6.2.7 Discussion and Motivation for Formulation

We see from Example 1 in Section 6.2.2, that, in the case of the Boolean sensing

model, the detection range is the same as the influence range, and hence, in Fig. 6.3(a),

the influence region of each sensor coincides with its detection region. We consider

an example with the same ROI (which is indicated by the square region) and the

sensor deployment as in Fig. 6.3(a). The ROI is detection–partitioned by N1 = {1, 4},
N2 = {1, 2, 4}, N3 = {2, 4}, N4 = {2, 3, 4}, N5 = {1, 2, 3, 4}, and N6 = {1, 3, 4}. The

event detection can be due to one of the sensor sets that detection cover the ROI, i.e., N1

or N2 or N3 or N4 or N5 or N6. We consider an event having occurred in subregion A2

(see Fig. 6.4; in the Boolean model, the dashed circles coincide with the corresponding
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solid ones), which is detection covered by N2 = {1, 2, 4}. We note here that N2 detection

covers ℓe, the location of the event (i.e., ℓe ∈ A(N2) and hence, ℓe ∈ B(N2)), and also

that the sensor sets N1 and N3 are subsets of N2. As the distances of the event from

different sensors are different and the observations X
(i)
k s are stochastic, it is possible

that the event is detected by N1 or N3 (i.e., it might take a little longer time for all

the sensors in N2 to detect the event). Since N1 ⊂ N2 (resp. N3 ⊂ N2), the influence

subregion B(N1) ⊃ B(N2) (resp. B(N3) ⊃ B(N2)). Thus, each of the influence subregions

B(N1) and B(N3) contains the location of the event (see Fig. 6.4; recalling that, in the

Boolean model, the dashed circles coincide with the corresponding solid ones), whereas

the detection subregion A(N1) or A(N3) does not contain the location of the event.

Hence, we choose to isolate the event to the influence subregion of the sensor set that

detects the event. Thus, the detection due to N1 orN2 orN3 isolates the event (correctly)

to the corresponding influence subregion. On the other hand, each of the sensor sets N4,

N5, and N6 contains at least one sensor that does not influence cover ℓe, and hence, the

detection due to N4 or N5 or N6 yields a false isolation.

In the case of the power law path–loss model (see Example 2 in Section 6.2.2), the

influence range is strictly larger than the detection range, and hence, we have concentric

discs around each sensor (the smaller one for the detection region and the larger one

for the influence region, see Figs. 6.3(b) and 6.4). Let the event occur in the detection

subregion of Ni, i.e., ℓe ∈ A(Ni). In the path–loss model, we have the following two

cases. In case 1, the location of the event does not belong to the influence region of any

sensor j /∈ Ni (i.e., ℓe /∈ T (j) for all j /∈ Ni), and in case 2, the location of the event

belongs to the influence region of some sensor j /∈ Ni (i.e., ℓe ∈ T (j) for some j /∈ Ni). In

the Boolean sensing model, as the influence region of a sensor coincides with its detection

region, an event, which is detection covered by Ni, can not lie in the influence region

(which is also the detection region) of any other sensor j /∈ Ni, and hence, the case 2

described for the path loss model never arises in the Boolean model.

For the power law path–loss model, we consider the same detection/isolation example

that we illustrated above for the Boolean sensing model. Also, we consider the case
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Figure 6.4: An Illustration of the case: ℓe ∈ A(Ni) and ℓe /∈ T (j), ∀j /∈ Ni: The ROI,
indicated by the square region, is detection–partitioned by N1 = {1, 4}, N2 = {1, 2, 4},
N3 = {2, 4}, N4 = {2, 3, 4}, N5 = {1, 2, 3, 4}, and N6 = {1, 3, 4}. In the Boolean
sensing model, the influence region of a sensor represented by a dashed circle coincides
with its detection region represented by a solid circle. The set of sensors N2 detection
covers the location of the event ℓe. If all the sensors in N2 or a subset of them as in N1

or N3 detect the event, then the corresponding influence region isolates the event (see
Figs. 6.4(a)–6.4(c)). On the other hand, if the detection is due to Ni 6⊆ N2, then the
influence region B(Ni) does not contain the location of the event (see Figs. 6.4(d)–6.4(f)).

where the location of the event ℓe ∈ A2 and ℓe /∈ T (3), i.e., the event lies in the detection

coverage region of N2 and does not lie in the influence region of sensor 3. In this case,

the isolation region that corresponds to the detection due to each sensor set Ni can be

explained in exactly the same manner as in the Boolean model, which we described above

(see Fig. 6.4).

We consider an example for the case 2 of the power law path–loss model, where

ℓe ∈ A(Ni) and ℓe ∈ T (j) for some j /∈ Ni. We consider the same ROI and the

sensor deployment as in the previous example (i.e., the ROI is a square region and is

detection–partitioned by N1 = {1, 4}, N2 = {1, 2, 4}, N3 = {2, 4}, N4 = {2, 3, 4},
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(a) B(N1) (b) B(N2) (c) B(N3)

(d) B(N4) (e) B(N5) (f) B(N6)

Figure 6.5: An Illustration of the case: ℓe ∈ A(Ni) and ℓe ∈ T (j), for some
j /∈ Ni (corresponding to Fig. 6.3(b)): The ROI, indicated by the square region,
is detection–partitioned by N1 = {1, 4}, N2 = {1, 2, 4}, N3 = {2, 4}, N4 = {2, 3, 4},
N5 = {1, 2, 3, 4}, and N6 = {1, 3, 4}. The set of sensors N1 detection covers the location
of the event ℓe and {1, 2, 4} = N2 influence covers ℓe. If all the sensors in N2 or a
subset of them as in N1 or N3 detect the event, then the corresponding influence region
isolates the event (see Figs. 6.5(a)–6.5(c)). On the other hand, if the detection is due to
Ni 6⊆ N2, then the influence region B(Ni) does not contain the location of the event (see
Figs. 6.5(d)–6.5(f)).

N5 = {1, 2, 3, 4}, and N6 = {1, 3, 4}, see Fig. 6.3(b)). If ℓe ∈ A2 and ℓe ∈ T (3) then ℓe

lies in the influence region of all the sensors (a trivial example), and hence, the detection

due to any Ni isolates the event (correctly) to the corresponding influence subregion.

We consider another example where the ROI and the sensor sets are the same as in the

previous example, and the location of the event ℓe ∈ A(N1), ℓe ∈ T (2), and ℓe /∈ T (3)

(see Fig. 6.5). In this example, ℓe lies in the influence region of sensors {1, 2, 4} and does

not lie in the influence region of sensor 3. Hence, the detection due to the set of sensors

N1 = {1, 4} or N2 = {1, 2, 4} or N3 = {2, 4} (i.e., subsets of {1, 2, 4} that influence cover

ℓe) isolates the event (correctly) to the corresponding influence subregion, whereas the
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detection due to the set of sensors N4 = {2, 3, 4} or N5 = {1, 2, 3, 4} or N6 = {1, 3, 4}
(sets which are not subsets of {1, 2, 4}) yields a false isolation.

6.3 Problem Formulation

We are interested in studying the problem of distributed event detection/isolation in

the setting developed in Section 6.2. Given a sample node deployment (i.e., given ℓ),

and having chosen a value of the detection range, rs, we partition the ROI, A into the

detection–subregions, A1,A2, · · · ,AN . Let Ni be the set of sensors that detection–cover

the region Ai. Let Bi be the influence region of the set of sensor nodes Ni. We define

the following set of hypotheses

H0 : event not occurred,

Hi : event occurred in subregion Ai, i = 1, 2, · · · , N.

The event occurs in one of the detection subregions Ai, but we will only be able to isolate

it to one of the influence subregions Bi that is consistent with the Ai (as explained

in Section 6.2.7). We study distributed procedures that detect and locate an event

(to any of the Bis) subject to a false alarm and false isolation constraint. The false

alarm constraint considered is the mean time to false alarm TFAi, and the false isolation

constraint considered is the mean time to false isolation TFIij , each of which we define as

follows.

Definition 6.3 For each 1 6 i 6 N , the Mean time to false alarm TFAi (due to

sensors Ni) is defined as the expected number of samples taken under the null hypothesis

H0 to raise an alarm, and declare the hypothesis Hi 6= H0 as true, i.e.,

TFAi := E∞

[
τ (Ni)

]
,

where E∞[·] is the expectation operator when the change occurs at infinity.
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Definition 6.4 For each i, j, 1 6 i 6= j 6 N , the Mean time to false isolation TFIij ,

is defined as the expected number of samples taken under the hypothesis Hi 6= H0 to

raise an alarm, and declare the hypothesis Hj as true where Bj , the influence subregion

corresponding to Hj, is not consistent with the subregion Ai in which the event actually

occurred, i.e.,

TFIij := sup
{s:ℓe∈Ai}

E
(s)
1

[
τ (Nj )

]
,

where E
(s)
1 [·] is the expectation operator when the change occurs at time 1, and in the

subregion Ai such that the vector of distances between the event and the sensor nodes

is s = [s1, s2, · · · , sn].

In the classical change detection problem, there is one prechange hypothesis and

only one postchange hypothesis (and hence, there is no question of a false isolation).

The CUSUM procedure was proposed by Page in [Page, 1954] as a non–Bayesian change

detection procedure. The optimality of CUSUM was shown by Lorden in [Lorden, 1971].

Lorden proposed a detection delay metric3,

ADD(τ) := sup
t>1

ess supEt

[
(τ − t + 1)+|X[1:t−1]

]
,

where ess sup (essential supremum) of a random variable X is defined as ess sup X :=

inf{a : P{X > a} = 0}, and Et is the corresponding expectation operator corresponding

to the probability measure Pt, when the change occurs at time t, conditioned on X[1:t−1].

Lorden showed that as γ → ∞, ADD(τCUSUM) = inf
{τ :TFA(τ)>γ}

ADD(τ), i.e., the CUSUM

procedure (see Eqns. (6.1) and (6.2)) is asymptotically worst case delay optimal.

In this work, we are interested in obtaining a detection/isolation procedure τ (for a

multihypothesis postchange problem) that defines a stopping time and the location of

the event. The error events that can occur are the false alarm and the false isolation

which are measured in terms of the mean time to false alarm TFAi and the mean time

3 For k2 > k1, the notation Y[k1:k2] is defined as [Yk1
, Yk1+1, · · · , Yk2

].
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to false isolation TFIij (defined above). We define the supremum average detection delay

SADD performance for the procedure τ in the same sense as Lorden [Lorden, 1971] (also

see [Nikiforov, 1995]) as the worst–case average number of samples taken under any

hypothesis Hi, i = 1, 2, · · · , N , to raise an alarm, i.e.,

SADD(τ) := sup
{s:ℓe∈A}

sup
t>1

ess sup E
(s)
t

[
(τ − t+ 1)+|X[1:t−1]

]
,

where s := [s1, s2, · · · , sn], sj being the distance between sensor j and the event. Note

that E
(s)
t is the conditional expectation operator (and P

(s)
t is the corresponding probability

measure) given X[1:t−1] when the change happens at time t and at the location ℓe ∈ A
such that the distance between sensor j and the event is sj. Thus, we are interested in

obtaining an optimal procedure τ that minimises the SADD subject to the mean time to

false alarm and the mean time to false isolation constraints,

inf sup
{s:ℓe∈A}

sup
t>1

ess sup E
(s)
t

[
(τ − t+ 1)+|X[1:t−1]

]

such that TFAi(τ) > γ, i = 1, 2, · · · , N

TFIij(τ) > γ, i 6= j, i, j = 1, 2, · · · , N.

The change detection/isolation problem that we pose here is motivated by the framework

of Nikiforov, [Nikiforov, 1995] which we discuss in the next subsection.

6.3.1 Centralised Solution for the Boolean Sensing Model

In [Nikiforov, 1995], Nikiforov studied a change detection/isolation problem that involves

N > 1 postchange hypotheses (and one prechange hypothesis). Thus, Nikiforov’s

formulation can be applied to our problem. But, Nikiforov considered a model in which

under hypothesis Hi, the joint pdf of the observation vector Xk, gi is completely known.

It should be noted that in our problem, in the case of power law path–loss sensing model,

the pdf of the observations under any postchange hypothesis is unknown as the location

of the event is unknown. The worst case detection delay of a multi–hypothesis change
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detection problem is given by sup
16i6N

sup
t>1

ess sup E
(i)
t

[
(τ − t + 1)+|X[1:t−1]

]
. The problem

posed by Nikiforov is

inf sup
16i6N

sup
t>1

ess sup E
(i)
t

[
(τ − t+ 1)+|X[1:t−1]

]
(6.5)

such that TFAi(τ) > γ, i = 1, 2, · · · , N

TFIij(τ) > γ, i 6= j, i, j = 1, 2, · · · , N

where TFAi and TFIij are as defined in Definitions 6.3 and 6.4. Nikiforov obtained an

asymptotically optimum centralised change detection/isolation procedure τNikiforov when

γ → ∞, i.e., as γ → ∞, SADD(τNikiforov) = inf
{τ :min{TFAi,TFIij}>γ}

SADD(τ). The SADD of the

asymptotically optimal procedure τNikiforov is given by the following theorem.

Theorem 6.1 ([Nikiforov, 1995]) For the N–hypotheses change detection/isolation

problem (for the Boolean sensing model) defined in Eqn. (6.5), the asymptotically worst

case delay optimal detection/isolation procedure τNikiforov has the property,

SADD(τNikiforov) ∼ ln γ

min
06i6N

min
16j 6=i6N

KL(gi, gj)
, as γ → ∞, (6.6)

where KL(f, g) is the Kullback–Leibler divergence between the pdfs f and g (and we recall

that gi is the joint pdf of the observation Xk under hypothesis Hi).

We note here that the decision statistic of Nikiforov’s procedure τNikiforov cannot be

computed in a recursive manner, making the procedure computationally prohibitive.

In the case of Boolean sensing model, for any postchange hypothesis Hi, after the

change occurs, only the set of sensor nodes that detection cover (which is the same as

influence cover) the subregion Ai switch to a postchange pdf f1 (and the distribution

of other sensor nodes continues to be f0). Since the pdf of the sensor observations

are conditionally i.i.d., the pdf of the observation vector, in the Boolean sensing model,

corresponds to the postchange pdf gi of Nikiforov’s problem. Thus, the problem considered

by Nikiforov directly applies to our setting with the Boolean sensing model. In our
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work, however, we propose algorithms for the change detection/isolation problem for any

sensing model. Also, Nikiforov’s procedure is centralised and computationally prohibitive,

whereas we propose distributed procedures which are computationally simple.

In Section 6.4, we propose a distributed detection procedure HALL and analyse its

false alarm (TFA), false isolation (TFI) and the detection delay (SADD) properties. We

also discuss the false alarm (TFA), false isolation (TFI) and the detection delay (SADD)

properties of the procedures MAX and ALL.

6.4 Distributed Change Detection/Isolation Procedures

In this section, we study the procedures MAX and ALL for change detection/isolation in

a distributed setting. Also, we propose a distributed detection procedure “HALL” for a

large WSN, and analyse the SADD, the TFA, and the TFI performance.

6.4.1 The MAX Procedure

Tartakovsky and Veeravalli proposed a decentralised procedure MAX for a collocated

scenario in [Tartakovsky and Veeravalli, 2003]. We extend the MAX procedure to a large

WSN under the TFA and TFI constraints. Recalling Section 6.2, each sensor node i employs

CUSUM for local change detection between pdfs f0 and f1(·; rs). Let τ (i) be the random

time at which the CUSUM statistic of sensor node i crosses the threshold c. The local

decision of sensor node i, D
(i)
k is defined as

D
(i)
k :=





0, for k < τ (i)

1, for k > τ (i).

The global decision rule τMAX declares an alarm at the earliest time slot k at which all

sensor nodes j ∈ Ni for some i = 1, 2, · · · , N have crossed the threshold c. Thus,

τMAX,(Ni) := max
{
τ (j), j ∈ Ni

}
,

τMAX := min
{
τMAX,(Ni) : 1 6 i 6 N

}
,
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i.e., the MAX procedure declares an alarm at the earliest time instant when the CUSUM

statistic of all the sensor nodes Ni corresponding to hypothesis Hi of some i crosses the

threshold at least once. Note that, when the alarm is due to the sensor nodes in the set

Ni, at the time of alarm τMAX, the CUSUM statistic of some nodes j ∈ Ni can be less

than the threshold, but the CUSUM statistic of each of these nodes j has crossed the

threshold at some time kj < τMAX.

The isolation rule is to declare the event having occurred in the influence region

Bi = B(Ni) corresponding to the set of sensors Ni that raised the alarm.

6.4.2 ALL Procedure

Mei, [Mei, 2005], and Tartakovsky and Kim, [Tartakovsky and Kim, 2006], proposed

a decentralised procedure ALL, again for a collocated network. We extend the ALL

procedure to a large extent network under the TFA and the TFI constraints. Here, each

sensor node i employs CUSUM for local change detection between pdfs f0 and f1(·; rs).
Let C

(i)
k be the CUSUM statistic of sensor node i at time k. The CUSUM in the sensor

nodes is allowed to run freely even after crossing the threshold c. Here, the local decision

of sensor node i is

D
(i)
k :=





0, if C
(i)
k < c

1, if C
(i)
k > c.

The global decision rule τALL declares an alarm at the earliest time slot k at which the

local decision of all the sensor nodes corresponding to a set Ni, for some i = 1, 2, · · · , N ,

are 1, i.e.,

τALL,(Ni) := inf
{
k : D

(j)
k = 1, ∀j ∈ Ni

}

= inf
{
k : C

(j)
k > c, ∀j ∈ Ni

}

τALL := min
{
τALL,(Ni) : 1 6 i 6 N

}
.
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Figure 6.6: ALL and HALL: Evolution of CUSUM statistic C
(i)
k of node i plotted vs. k.

Note that at time k = V
(i)
j , R

(i)
j is the excess above the threshold.

The isolation rule is to declare the event having occurred in region Bi = B(Ni) corresponding

to the set of sensors Ni that raised the alarm. Note that ALL declares an alarm only

when the CUSUM statistic of all the nodes j ∈ Ni are above the threshold.

6.4.3 HALL Procedure

Motivated by the fact that sensor noise can make the CUSUM statistic fluctuate around

the threshold, we propose a local decision rule which is 0 when the CUSUM statistic has

visited zero and has not crossed the threshold yet and is 1 otherwise. We explain the

HALL procedure below.

The following discussion is illustrated in Fig. 6.6. Each sensor node i computes a CUSUM

statistic C
(i)
k based on the LLR of its own observations between the pdfs f1(·; rs) and f0.

Define U
(i)
0 := 0. Define V

(i)
1 as the time at which C

(i)
k crosses the threshold c (for the

first time) as:

V
(i)
1 := inf

{
k : C

(i)
k > c

}

(see Fig. 6.6 where the “overshoots” R
(i)
k , at V

(i)
k , are also shown). Note that inf ∅ := ∞.

Next define

U
(i)
1 := inf

{
k > V

(i)
1 : C

(i)
k = 0

}
.
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Now starting with U
(i)
1 , we can recursively define V

(i)
2 , U

(i)
2 etc. in the obvious manner

(see Fig. 6.6). We define the quiet–times and the active–times of the CUSUM process C
(i)
k

as Q
(i)
j := V

(i)
j − U

(i)
j−1 and A

(i)
j := U

(i)
j − V

(i)
j . Each node i computes the local decision

D
(i)
k based on the CUSUM statistic C

(i)
k as follows:

D
(i)
k =





1, if V
(i)
j 6 k < U

(i)
j for some j

0, otherwise.
(6.7)

The global decision rule4 is a stopping time τHALL defined as the earliest time slot k at

which all the sensor nodes in a region have a local decision 1, i.e.,

τHALL,(Ni) := inf
{
k : D

(j)
k = 1, ∀j ∈ Ni

}
,

τHALL := min
{
τHALL,(Ni) : 1 6 i 6 N

}
.

The isolation rule is to declare the event having occurred in the region B(Ni) corresponding

to the set of sensors Ni which raised the alarm.

For the distributed proceduresMAX, ALL, and HALL, we analyse the SADD performance

in Section 6.4.4, the TFAi in Section 6.4.5 and the TFIij in Section 6.4.6.

6.4.4 Supremum Average Detection Delay (SADD)

In this section, we analyse the SADD performance of the distributed detection/isolation

procedures. We observe that for any sample path of the observation process, for a given

threshold c, the MAX rule raises an alarm first, followed by the HALL rule and then by

the ALL rule. This ordering is explained as follows. We note that for any node i, the local

decision statistic of the MAX procedure, D
(i)
k = 0 for k < τ (i) and D

(i)
k = 1 for k > τ (i).

It can happen that the CUSUM statistic C
(i)
k at some k > τ (i) goes below c, the CUSUM

threshold, in which case, the local decision of the ALL rule is 0 (but that of MAX is 1).

Let V
(i)
jk

< k be the last time instant before k at which the CUSUM statistic of the ith

4The procedures HALL,MAX and ALL differ only in their local decision rule; the global decision rule

as a function of D
(i)
k s is the same for HALL,MAX and ALL.
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node crossed the threshold c. If at all time instants between (and including) V
(i)
jk

and k,

the CUSUM statistic is strictly greater than 0, then the local decision statistic of HALL

is 1; otherwise, it is 0. Thus, the local decisions of MAX, HALL, and ALL are ordered as

D
(i)
k (MAX) > D

(i)
k (HALL) > D

(i)
k (ALL), and hence, we have,

τMAX 6 τHALL 6 τALL. (6.8)

We recall that each of the stopping timesMAX, HALL, or ALL is the minimum of stopping

times corresponding to the sets of sensors {Nr : r = 1, 2, · · · , N}, i.e.,

τ rule = min{τ rule,(Nr) : r = 1, 2, · · · , N}

6 τ rule,(Nr), for any r = 1, 2, · · · , N

where “rule” can be MAX or HALL or ALL.

Let Hi be the true hypothesis, i.e., the location of the event ℓe ∈ Ai. Since Hi is the

true hypothesis, we have ∀j ∈ Ni, sj 6 rs. Also, we have τALL 6 τALL,(Ni). Hence,

SADD
(
τALL

)
:= sup

{s:ℓe∈Ai}
sup
t>1

ess supE
(s)
t

[(
τALL − t+ 1

)+ | X[1:t−1]

]

6 sup
{s:ℓe∈Ai}

sup
t>1

ess supE
(s)
t

[
(τALL,(Ni) − t+ 1)+ | X[1:t−1]

]
.

We note from [Tartakovsky and Kim, 2006], as the CUSUM threshold c → ∞,

sup
t>1

ess supE
(s)
t

[
(τALL,(Ni) − t + 1)+ | X[1:t−1]

]
=

c

minj∈Ni
Ef1(·;sj) [Z (sj)]

(1 + o(1)) ,

6
c

Ef1(·;rs) [Z (rs)]
(1 + o(1)) ,

=
c

KL(f1(·; rs), f0)
(1 + o(1)) . (6.9)

The inequality above follows from Ef1(·;sj) [Z (sj)] =
(heρ(sj))2

2σ2 >
(heρ(rs))2

2σ2 = Ef1(·;rs) [Z (rs)]

as f1(·; d) ∼ N (heρ(d)+µ0, σ
2), and f0 ∼ N (µ0, σ

2), sj 6 rs ∀j ∈ Ni, and ρ(d) decreases



166Chapter 6. Quickest Detection and Localisation of Events in Large Extent Networks

in d. Since the inequality in Eqn. (6.9) does not depend on i, we conclude that as c → ∞,

SADD(τALL) 6
c

KL
(
f1(·; rs), f0

)(1 + o(1)),

and from Eqn. (6.8), and the definition of SADD, we have

SADD(τMAX) 6 SADD(τHALL) 6 SADD(τALL) 6
c

KL(f1(·; rs), f0)
(1 + o(1)), as c → ∞,(6.10)

where KL(f1(·; rs), f0) is the Kullback–Leibler divergence between the pdfs f1(·; rs) and
f0.

Remark: Recall from Section 6.2.3 that µ1 = heρ(rs)+µ0. We now see that µ1 governs

the detection delay performance which can be chosen such that a requirement on SADD

is met. Thus, to achieve a requirement on SADD, we need to choose rs appropriately. A

small value of rs gives less detection delay compared to a large value of rs. But, a small

rs requires more sensors to detection–cover the ROI.

6.4.5 Mean Time to False Alarm due to Nr (TFAr)

From [Tartakovsky and Veeravalli, 2008], we note that for a CUSUM threshold c, the

expected number of samples to raise a false alarm and locate the event in subregion Br

for the MAX procedure is given by

TFAr > exp(c). (6.11)

Note that τ (r), the time at which the last sensor in Nr crosses the threshold c, is at least

as large as the stopping time of the CUSUM procedure at any sensor node j ∈ Nr. As the

mean time for each CUSUM to cross the threshold is exp(c) ([Basseville and Nikiforov, 1993]),

TFAr of MAX procedure is at least as large as exp(c). Thus, for MAX procedure to achieve

a TFAr of γ, we can choose the CUSUM threshold c = ln γ.

From [Mei, 2005], the expected number of samples to raise a false alarm and locate
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the event in subregion Br for the ALL procedure is given by

TFAr

(
τALL

)
> exp (|Nr|c) . (6.12)

In ALL, an alarm is made in Br only when all the |Nr| CUSUM processes are above the

threshold c. Since, these processes are independent, the probability of all sensor nodes

j ∈ Nr in alarm state can be shown to be 1/ exp(|Nr|c) (see [Mei, 2005]), and hence, the

result follows. Thus, for ALL we choose c > lnγ
|Nr|

to achieve a TFAr of γ.

The TFAr performance of HALL is given by the following theorem.

Theorem 6.2 TFAr

(
τHALL

)
> γ when the threshold c is chosen such that c

(
1− 1

β+o(1)

)
>

ln(γ+1)
|Nr|

+ln β+o(1)
KL(f0,f1(·;rs))

, where β > 1 is a constant that depends on the pdfs f0(·), f1(·; rs).

6.4.6 Mean Time to False Isolation (TFIij)

Here, we consider the scenario in which the hypothesis Hi is true and the hypothesis

Hj is declared to be true at the time of alarm, and the event does not lie in the region

B(Nj). We are interested in finding the mean time to alarm due to Nj when ℓe ∈ B(Ni)

and ℓe /∈ B(Nj), i.e., there exists a node j′ ∈ Nj such that ℓe /∈ T (j′), the influence region

of node j′. We are interested in obtaining the corresponding mean time to false isolation,

TFIij which we show in the following theorem.

Theorem 6.3 Define the parameters λij as follows: for the Boolean sensing model,

λij = |Nj \ Ni| and for the path–loss sensing model, λij = 1. The TFIij for the change

detection/isolation procedures is given by

1. TFIij

(
τMAX

)
> γ, when the threshold c is chosen such that c > ln γ

ω0
.

2. TFIij

(
τALL

)
> γ, when the threshold c is chosen such that c > ln γ

ω0λij
.

3. TFIij

(
τHALL

)
> γ, when the threshold c is chosen such that c

(
1− 1

β+o(1)

)
>

ln(γ+1)
ω0λij

+ln β+o(1)
ω0KL(f0,f1(·;rs))

, where β > 1 is a constant that depends upon the distribution

of the LLR of the observation.
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where we recall that ω0 is the parameter we defined in Section 6.2.6 that defines the lower

bound on the mean time to cross the threshold for sensors beyond a distance of R̄ from

the event.

In the next subsection, we discuss the asymptotic minimax delay optimality of the

distributed procedures in relation to Theorem 6.1.

6.4.7 Asymptotic Order Optimality

Define the parameter M̃ as

M̃ = min
16i6N

min
16j 6=i6N

min
{
|Ni|, λij

}
.

Choosing the local CUSUM threshold, c = ln γ

ω0M̃
for ALL, c = ln(γ+1)

(1− 1
β )ω0M̃

+ 1
1− 1

β

ln β
ω0KL(f0,f1(·;rs))

for HALL, and c = ln γ
ω0

for MAX, we see from Eqns. (6.11) and (6.12), and Theorems 6.2

and 6.3, that as γ → ∞, min{TFAi(τ
rule),TFAij(τ

rule)} > γ for ALL, HALL, and MAX.

From Eqn. (6.9), we see that

SADD(τALL) 6
ln γ

ω0M̃ ·KL(f1(·; rs), f0)
(1 + o(1)) ,

SADD(τHALL) 6
ln(γ + 1)(

1− 1
β

)
ω0M̃ ·KL(f1(·; rs), f0)

(1 + o(1)) + C + o(1),

SADD(τMAX) 6
ln γ

ω0 ·KL(f1(·; rs), f0)
(1 + o(1)) , (6.13)

where o(1) → 0 as γ → ∞ and the constant C is given by C = ln(β)

(1− 1
β )ω0·KL(f0,f1(·;rs))·KL(f1(·;rs),f0)

.

Note that as we decrease the detection–range rs, KL(f1(·; rs), f0) and ω0 increases. But

M̃ decreases as rs decreases. Thus, to achieve a smaller detection delay, the detection

range rs can be decreased, and the number of sensors n can be increased.

We can compare the asymptotic SADD performance of the distributed procedures

HALL, MAX and ALL against the optimal centralised scheme of Nikiforov for the Boolean

sensing model. We recall that in the Boolean sensing model, the signal strength of the

event remains a constant in a disk of radius rs (which is the same as R̄), and is 0 beyond
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the detection range. Hence, any sensor that is not in the detection range of the event

observes only the sensor noise, and hence, the mean time for its CUSUM statistic to cross

a threshold c is ec, thus giving ω0 = 1. For Gaussian pdfs f0 and f1, the KL divergence

between the hypotheses Hi and Hj is given by

KL(gi, gj) =

∫
ln

(∏
s∈Ni

f1(x
(s))

∏
s′ /∈Ni

f0(x
(s′))∏

s∈Nj
f1(x(s))

∏
s′ /∈Nj

f0(x(s′))

)
∏

s∈Ni

f1(x
(s))

∏

s′ /∈Ni

f0(x
(s′)) dx

=

∫ 
ln

(
∏

s∈Ni

f1(x
(s))

f0(x(s))

)
− ln


 ∏

s∈Nj

f1(x
(s))

f0(x(s))




 ∏

s∈Ni

f1(x
(s))

∏

s′ /∈Ni

f0(x
(s′)) dx

=
∑

s∈Ni

KL(f1, f0)−
∫

ln


 ∏

s∈Nj∩Ni

f1(x
(s))

f0(x(s))


 ∏

s∈Ni

f1(x
(s))

∏

s′ /∈Ni

f0(x
(s′)) dx

−
∫

ln


 ∏

s∈Nj\Ni

f1(x
(s))

f0(x(s))


 ∏

s∈Ni

f1(x
(s))

∏

s′ /∈Ni

f0(x
(s′)) dx

=
∑

s∈Ni

KL(f1, f0)−
∑

s∈Nj∩N
i

KL(f1, f0) +
∑

s∈Nj\Ni

KL(f1, f0)

= |Ni ∆ Nj | KL(f1, f0)

where the operator ∆ represents the symmetric difference between the sets. Thus, from

Theorem 6.1 for Gaussian f0 and f1, we have

SADD(τNikiforov) ∼ ln γ

M∗ ·KL(f1, f0)

where M∗ = min
16i6N

min
16j6N,j 6=i

min {|Ni|, |Ni ∆ Nj|} .

Note that for the same min{TFA,TFI} requirement of γ, the SADD of the asymptotically

optimum centralised procedure τ ∗, and τALL and τHALL scale as ln γ/KL(f1, f0). Hence,

ALL and HALL are asymptotically order optimal. The factor 1/(1 − 1/β) in the SADD

of HALL makes this slightly larger than SADD(τALL). To achieve the desired false

alarm performance for the MAX procedure, we choose the threshold c = ln γ and hence

SADD
(
τMAX

)
∼ ln γ

KL(f1(·;rs),f0)
. Thus, the SADD performance of MAX is worse than

that of ALL or HALL. Note that M̃6M∗. This is because |Nj \ Ni| 6 |Nj∆Ni|.
In the case of centralised setting, the observations from sensor nodes in Nj \ Ni and

in Nj \ Ni can provide the location information of the event in a better way. In a
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Figure 6.7: Sensor nodes placement: 7 sensor nodes (which are numbered 1,2,· · · ,7)
represented by small filled circles are placed in the hexagonal ROI A. The ROI is
detection partitioned by the sets of sensor nodes, N1 = {1, 3, 4, 6},N2 = {1, 3, 4},N3 =
{1, 2, 3, 4},N4 = {1, 2, 4},N5 = {1, 2, 4, 5},N6 = {2, 4, 5},N7 = {2, 4, 5, 7},N8 =
{4, 5, 7},N9 = {4, 5, 6, 7},N10 = {4, 6, 7},N11 = {3, 4, 6, 7}, and N12 = {3, 4, 6} with
the subregion Ai being the detection region (for both the Boolean and the power law
path loss sensing models) of the sensor set Ni.

distributed setting, this information is not available, and hence, the TFIij performance

of the distributed procedures is a little worse than that of the asymptotically optimum

centralised procedure. To compensate for the decrease in TFIij, we increase the CUSUM

threshold, which increases the SADD of the distributed procedures. But, the decrease

in SADD of the centralised procedure is offset by substantially larger computation and

communication costs, particularly in terms of the node energy expenditure, a critical

issue in the context of WSNs.

6.5 Numerical Results

We compute the SADD and the TFAi performance of MAX, HALL, ALL, and Nikiforov’s

procedure for the Boolean sensing model with f0 ∼ N (0, 1) and f1 ∼ N (1, 1). We

consider a deployment of 7 nodes in a hexagonal ROI (the detection region of each node

being a disc of unit radius around it, see Fig. 6.7) such that we get N = 12 detection

subregions, and N1 = {1, 3, 4, 6},N2 = {1, 3, 4},N3 = {1, 2, 3, 4},N4 = {1, 2, 4},N5 =

{1, 2, 4, 5},N6 = {2, 4, 5},N7 = {2, 4, 5, 7},N8 = {4, 5, 7},N9 = {4, 5, 6, 7},N10 =

{4, 6, 7},N11 = {3, 4, 6, 7}, and N12 = {3, 4, 6}. From Eqns. (6.11) and (6.12), and
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from Theorem 6.2, it is clear that for a given threshold c, the TFAi is determined by |Ni|,
the number of sensors in Ni. Thus, TFA1 = TFA3 = TFA5 = TFA7 = TFA9 = TFA11, and

TFA2 = TFA4 = TFA6 = TFA8 = TFA10 = TFA12. Also (from Eqns. (6.11) and (6.12), and

from Theorem 6.2), it is clear that larger the number of sensors in a sensor set, higher will

be the TFA. Hence, the TFA performance of the change detection procedures are limited by

the three sensor sets (TFA2, TFA4, TFA6, TFA8, TFA10, TFA12). Hence, we obtain the SADD

and the TFAi (due to any of the 3 sensor sets) by simulation. For a detection/isolation

procedure, we choose a range of the threshold c such that the TFAi varies from 100 to

105. For each threshold c of the local CUSUM chosen, we obtained the time to false

alarm and the detection delay for 100 runs of the simulation, and took the average of

these to be the TFAi and the SADD respectively. We note here that all the observations

are sampled from Gaussian distribution with mean 0 and variance 1 for generating the

TFAi, and Gaussian distribution with mean 1 and variance 1 for generating the SADD

(this assumes that the event has occurred at time 1, which corresponds to the worst case

delay, see [Lorden, 1971]). We plot the SADD against the corresponding log(TFAi) in

Fig. 6.8(a). We observe from Fig. 6.8(a) that SADD increases linearly with log(TFAi) and

that the slope is ≈ 1/KL(f1, f0) for MAX, and ≈ 1/(3 · KL(f1, f0)) for HALL, ALL, and

Nikiforov’s procedure. Also, we observe that for a given TFAi, Nikiforov’s procedure has

the smallest SADD and MAX has the largest SADD. For example, for a TFAi requirement

of 2000 slots, Nikiforov’s procedure gives an SADD of 6.2 slots, ALL gives an SADD of 8

slots, HALL gives an SADD of 9 slots, and MAX gives an SADD of 17.5 slots. Nikiforov’s

procedure is an optimal centralised procedure and hence it outperforms ALL, HALL and

MAX in terms of SADD. Also, the SADD of MAX is the largest as it does not scale with

M̃ . From Eqn. (6.13), it is clear that the SADD of ALL is little smaller than that of

HALL.

For the same sensor deployment in Fig. 6.7, we compute the SADD and the TFA for

the square law path loss sensing model given in Section 6.2.2. Also, the sensing radius

rs and the signal strength he are taken to be unity. Thus, the sensor sets (Nis) and the

detection subregions (Ais) are the same as in the Boolean model, we described above.
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(a) SADD vs TFA for the Boolean model
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(b) SADD vs TFA for the square law path loss
model

Figure 6.8: SADD versus TFA for MAX, HALL, ALL and Nikiforov’s procedure for the
Boolean and the square law path loss sensing models. In the Boolean sensing model, the
system parameters are f0 ∼ N(0, 1), f1 ∼ N(0, 1), and in the case of path loss sensing
model, the parameters are f0 ∼ N(0, 1), rs = 1.0, R̄ = 1.5.

The prechange pdf f0 is taken to beN (0, 1), and since rs is taken as 1, f1(·; rs) ∼ N (1, 1).

Thus, the LLR of observation X
(i)
k is given by log

(
f1(X

(i)
k

;rs)

f0(X
(i)
k

)

)
= X

(i)
k − 1

2
, which is

the same as that in the Boolean sensing model. Hence, under the event not occurred

hypothesis, as the pdf of all X
(i)
k s is f0(·), the TFAis under the path loss sensing model

is the same as that of the Boolean sensing model. We consider an event occurring in

a detection subregion Ai. Let the event be detected by Nj which influence covers the

event, i.e., ℓe ∈ B(Nj). We assume a worst case distance between the event and sensors

s ∈ Nj, i.e., des = R̄, the influence range. The influence range R̄ is taken to be 1.5 (i.e.,

the influence region of a sensor overlaps with almost half of the detection region of each

adjacent sensor). Due to the symmetry in the sensor locations (also in detection and

influence subregions), we obtain the SADD and the TFAi due to any of the 3 sensor sets

by simulation. For a distributed detection/isolation procedure, we choose a range of the

threshold c such that the TFAi varies from 100 to 105. For each threshold c of the local

CUSUM chosen, we obtained the time to false alarm and the detection delay for 100 runs

of the simulation, and took the average of these to be the TFAi and the SADD respectively.

We note here that all the observations are sampled from Gaussian distribution with mean

0 and variance 1 for generating the TFAi, and Gaussian distribution with mean 1 and
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variance 1 for generating the SADD (this assumes that the event has occurred at time

1, which corresponds to the worst case delay, see [Lorden, 1971]). Also, we note that

the location of the event is at a distance of R̄ from all the nodes of Nj that influence

covers the event. We plot the SADD against the corresponding log(TFAi) in Fig. 6.8(b).

We observe from Fig. 6.8(b) that for large TFAi, SADD increases linearly with log(TFAi).

Also, we observe that for a given TFAi, the smallest SADD is achieved by both ALL and

HALL, and MAX has the largest SADD. For example, for a TFAi requirement of 2000

slots, ALL and HALL gives an SADD of 40 slots, and MAX gives an SADD of 110 slots.

Thus, for a TFA requirement of 2000 slots, the SADD performance is poorer in path loss

model by 30 slots compared to the Boolean model in the case of ALL and HALL, and

the SADD performance is worse by 92.5 slots in the case of MAX procedure. This is the

price we pay for the uncertainty about the location of the event.

6.6 Conclusion

We consider the quickest distributed event detection/isolation problem in a large extent

WSN with a practical sensing model which incorporates distance losses. We formulate the

change detection/isolation problem in the optimality framework introduced by Nikiforov

[Nikiforov, 1995]. We propose distributed detection/isolation procedures, MAX, ALL

and HALL and show that as min{TFA,TFI} → ∞, the SADD performance of HALL

and ALL is of the same order as that of the optimal centralised procedure of Nikiforov

[Nikiforov, 1995].

6.7 Appendix

Proof of Theorem 6.2

We recall in the case of Boolean sensing model that the detection and influence subregions

corresponding to a set of sensor nodes is the same. Note that for any i = 1, 2, · · · , n,
{U (i)

j , j > 1} is a renewal process, with the jth cycle being the time interval (U
(i)
j−1, U

(i)
j ].
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Let A
(i)
j be the reward in the jth cycle. By renewal theory, we can show that the

probability of a node in local alarm state is given by
E∞A

(1)
1

E∞A
(1)
1 +E∞Q

(1)
1

and, because the

CUSUMs of nodes i ∈ Nr are independent, probability of false alarm in region Ar is

PFAr =

(
E∞A

(1)
1

E∞A
(1)
1 + E∞Q

(1)
1

)|Nr|

. (6.14)

Let τ1 < τ2 < · · · be the random times at which the system enters false alarm in region

Ar and let 0 =: ζ0 < ζ1 < ζ2 < · · · be the random times at which the system comes out

of the false alarm in region Ar. We define TTFr, the mean time to false alarms in Ar, as

TTFr := lim
m→∞

1

m

m∑

j=1

[τj − ζj−1] .

We now show from sample path and coupling arguments that TTFr 6 TFAr. At the times

ζ1, ζ2, · · · at which the system comes out of the false alarm in region Ar, the CUSUM

statistic of some of the sensor nodes is non–zero. Thus, the time between the alarm τj

and ζj−1 is less than or equal to the mean time to false alarm TFAr, the time required for

a alarm when the CUSUM statistic of all the sensor nodes are reset to zero. Note that

PFAr, the fraction of time the system is in false alarm in region Ar is given by

PFAr = lim
m→∞

∑m
j=1 [ζj − τj ]∑m

j=1 [(τj − ζj−1) + (ζj − τj)]

> lim
m→∞

m∑m
j=1 [τj − ζj−1] +m

= lim
m→∞

1
1
m

∑m
j=1 [τj − ζj−1] + 1

(6.15)

=
1

TTFr + 1
(6.16)

The inequality in the second step is due to the fact that the time duration the system

spends in false alarm state is at least one step and the function g : {1, 2, 3, · · · } → R

defined by g(x) := x
K+x

is an increasing function, for a constant K. Therefore, combining
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Eqn. (6.14) and Eqn. (6.15), we have

TTFr >



E∞

[
A

(1)
1 +Q

(1)
1

]

E∞

[
A

(1)
1

]




|Nr|

− 1

>


 ec

E∞

[
A

(1)
1

]




|Nr|

− 1 (6.17)

= exp

(
|Nr|c

(
1− lnE∞A

(1)
1

c

))
− 1. (6.18)

The inequality in the second step follows from E∞

[
Q

(1)
1

]
> ec (see Eqn. 5.2.80 in

[Basseville and Nikiforov, 1993]) and E∞A
(1)
1 > 0. In the same way as in Eqn. 5.2.67

in [Basseville and Nikiforov, 1993], we can show that

E∞A
(1)
1 6

c+ eu + o(1) + ed
KL(f0, f1(·; rs))

,

where eu+ o(1) = E∞R
(i)
j is the mean excess above c (in up–crossing) and ed is the mean

excess in down–crossing. Note that the positive constants, eu and ed do not depend on

the threshold c ([Woodroofe, 1982], [Basseville and Nikiforov, 1993]). Define β = eu+ed.

Hence,

lnE∞A
(1)
1

c
6

ln(c+ β + o(1))− lnKL(f0, f1(·; rs))
c

=
ln(β + o(1))

c
+

ln(1 + c
β+o(1)

)

c
− lnKL(f0, f1(·; rs))

c

6
ln(β + o(1))

c
+

1

β + o(1)
− lnKL(f0, f1(·; rs))

c
. (6.19)

Hence, Theorem 6.2 follows from Eqns. (6.17) and (6.19) as TTFr 6 TFAr.
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Proof of Theorem 6.3 The true hypothesis is Hi, but false isolation has occurred by

declaring the hypothesis Hj to be true, and hence isolating the event to Bj even though

the event does not lie in Bj . Note that Nj = (Nj ∩ Ni)
⋃

(Nj \ Ni). Since we have

assumed that Hi is true, the sensors in the set Nj ∩ Ni are within the influence range

of the event. For the Boolean sensing model, the event is beyond the influence range of

all the sensors in the set Nj \ Ni (since the influence range is the same as the sensing

range), and for the path–loss model the event is beyond the influence range of at least

one sensor in Nj \ Ni (otherwise, by definition, the event is in B(Nj)). Thus, we have

defined λij = |Nj \ Ni| for the Boolean sensing model, and 1 for the path–loss sensing

model. From sample path argument, it is clear that the time taken to raise an alarm in

region Bj is at least as large as the time taken when we restrict the set Nj to those which

are beyond the influence range of each of the sensors in Nj ∩ Ni (from Lemma 2 and

the definition of influence range, we see that the set of sensors in the influence region

take less than exp(ω0c) samples to cross the threshold). There are at least λij nodes in

this restricted set. The observation of any of these sensor nodes is just the sensor noise

and hence the theorem follows from Eqns. (6.11) and (6.12), from Lemma 6.2, and from

Theorem 6.2.
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Conclusions

In this thesis, we studied event detection problems under various scenarios. Our major

contributions in this thesis, are as follows. We identified a number of limitations of

the classical change detection problem. For some of the limiting cases, we provided

mathematical models, formulated the event detection problems, and obtained optimum

detection procedures.

In the first part of the thesis, we focused on Bayesian event detection in a small extent

network. As the network is a small extent one, our interest was in obtaining centralised

detection procedures.

In Chapter 3, we studied the problem of quickest event detection with sleep–wake

scheduling. At each time instant k, we wish to control the sleep–wake state of sensors, in

addition to making a decision on stopping at time k or to continue sampling at time

k + 1. In order to control the number of sensors in the wake state, we added the

sensing+computation+communication cost incurred for using each sensor in each time

instant in the wake state to the Bayesian cost function of the classical change detection

problem. We were interested in obtaining optimal detection procedures that minimise

the Bayesian cost subject to the constraint, PFA 6 α. We showed that the optimization

problem can be cast as a partially observable Markov decision process (POMDP). We

also showed that at any time k, a sufficient statistic for this problem is the a posteriori

probability of change, Πk = P {T 6 k | Ik}. Based on the theory of POMDP, we obtained

177
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quickest event detection rule along with optimal closed loop and open loop control policies

for choosing a number of sensors in the wake state. In particular, at each time k, based

on Πk, we obtained

1. optimal (closed loop) control of the number of sensors in the wake state at time

k + 1,

2. optimal (closed loop) control of the probability of a sensor in the wake state at

time k + 1, and

3. optimal (open loop) control of the probability of a sensor in the wake state.

It is to be noted that the optimal open loop control policy does not depend on Πk, and

is computed at time k = 0. We argued that the optimal number of sensors to be kept

in the wake state is small when Πk is either small (close to 0) or large (close to 1), and

is large when Πk is neither small nor large (in the numerical example, we see that this

happens around 0.5). Also, we observed from a sample path of the {Πk} process that

for most of the time, the closed loop control policies keep only a few sensors in the wake

state.

Several extensions to this work is possible. We considered a centralised detection

problem. However, it will be interesting to extend our problem to the decentralised

detection setting (see for example, [Veeravalli, 2001]). Also, one can try to obtain some

interesting simple heuristic policies for sleep–wake control.

In Chapter 4, we studied the problem of event detection on wireless ad hoc networks.

In this problem, the sensor nodes and the fusion centre are connected by a wireless ad

hoc network like IEEE 802.11 or ZigBee. To the best of our knowledge, the problem of

sequential change detection over a network has not been studied in the literature so far,

and this is the first work to investigate this problem in great detail. It is to be noted

that the sensors, in general, generate samples at a periodic sampling rate of r samples

per time slot. Thus, we are also interested in studying the effect of sampling rate on the

mean detection delay.
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We proposed a decision strategy which we call Network Aware Decision Making (NADM).

We now describe the NADM procedure in detail. We time–stamp the samples with

the sampling instants. The samples contend for channel access and reach the fusion

centre eventually. The fusion center is equipped with a sequencer buffer and a decision

maker. We enqueue in the sequencer buffer, the out–of–time sequence samples that are

successfully transmitted and release them to the decision maker as early as possible. By

using the sequencer buffer and the queueing strategy, we ensured that the decision maker

receives the samples in the non–decreasing order of time–stamps, as early as possible. In

each time slot k, the decision maker makes a decision on stopping at time k or to wait

for samples at time k + 1, based on the samples it has received thus far.

We were interested in obtaining an optimal NADM procedure in the fusion centre

that minimises the mean detection delay subject to the constraint, PFA 6 α. We

modelled the MAC layer of the network as a generalized processor sharing queueing

system. It is necessary to understand the network delay suffered by each sample for

information fusion by the decision maker. We showed that the network delay of each

sample can be computed from the state of the network, Qk. Since at each time k, a

sample that the decision maker receives, if any, carries information about the state of

nature delayed by ∆k, we need to keep track of the state of nature at time instants

k − ∆k, k − ∆k + 1, · · · , k. Thus, we appended the network–state, Qk and Θk, where

Θ := [Θk−∆k
,Θk−∆k+1, · · · ,Θk. We showed that the system with the state [Qk,Θk] forms

a discrete time dynamical system. We also showed that the distribution of samples that

the decision maker receives in time slot k + 1 is governed by the state of the system in

time slot k. Thus, we formulated the problem of Bayesian quickest event detection using

NADM strategies as a POMDP. We showed that at any time k, a sufficient statistic for

this problem is the vector, [Qk,Πk], where Πk = P {T 6 k | Ik}. Based on the theory

of POMDP, we obtained an optimal NADM policy. We showed that the optimal NADM

policy is a threshold rule on Πk where the threshold depends on the network–state, Qk.

We also studied the tradeoff between the mean detection delay of the optimal NADM

procedure and the sampling rate r. We note that the detection delay has three components:
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i) sampling delay, ii) network–delay, and iii) decision delay. We observed that a large

(small) sampling rate r implies a large (small) network–delay and a small (large) sampling–

delay. We showed numerically that an optimal sampling rate r∗ exists which offers a

minimum mean detection delay. We also studied the mean detection delay performance

as a function of the number of sensor nodes deployed while keeping the total number of

observations per time slot (nr) fixed at some value. We observed that the total number

of observations per time slot determines the load on the queueing–network. We observed

numerically for a set of parameters that when the load on the queueing–network is

maximum (nr = 1/3), using 1 sensor node is optimal, and when nr = 1/100, using 10

sensor nodes is optimal.

In Chapter 5, we studied the problem of transient change detection. A transient

change is a short–lived change, which disappears after staying for a finite time in the

system. We proposed a Markov chain model for transient change which is an extension

of the classical change model. In this work, we were interested in obtaining optimal

detection procedures for transient change subject to the false alarm constraint, PFA 6 α.

As in Chapters 3 and 4, we formulated the optimal transient change detection problem

as a POMDP. We showed that a sufficient statistic at any time instant k is the a posteriori

probability vector [Πk,0,Πk,1,Πk,2] where 0 represents pre–change state, 1 represents

in–change state, and 2 represents out–of–change state. Using the theory of POMDP,

we obtained the following detection procedures:

1. MinD (Minimum Detection Delay) which minimises the mean detection delay

under the constraint PFA 6 α

2. A–MinD (Asymptotic – Minimum Detection Delay) which is asymptotically

equivalent to MinD when the mean time until the occurrence of change goes to ∞
(i.e., for a rare event)

3. MaxP (MaximumProbability of change) which maximises the probability of stopping

in the in–change state (called as probability of detection, PD) under the constraint,

PFA 6 α.



181

We observed numerically that the mean detection delay of A–MinD is approximately

the same as that of MinD. This suggests that A-MinD is a better approximation to MinD.

Also, A-MinD being a simple threshold rule is easy to implement. We also studied the

detection delay and the probability of detection performance of only the events that are

stopped in the in–change state. Here, we observed that CUSUM outperforms MinD in

mean detection delay and performs close to MaxP in probability of detection.

In the second part of the thesis, we focused on large extent networks. In this part

of the thesis, we studied the problem of detecting and locating an event (also called as

isolation) in a large extent WSN. Since the network is large, our interest was obtaining

quickest distributed detection/isolation procedures. To the best of our knowledge, our

work is the first to consider the problem of distributed event detection/isolation in a

large extent WSN.

In Chapter 6, we studied the problem of event detection/isolation in large extent

networks. We formulated the problem as an optimization problem that minimises the

worst case detection delay subject to time–to–false alarm, TFA and time–to–false isolation,

TFI constraints. The problem formulation is done in the framework of [Nikiforov, 1995].

In [Nikiforov, 1995], Nikiforov considered a Boolean sensing model and proposed a

centralised minimax optimal change detection procedure. In this work, we considered

a realistic signal propagation model in which the signal strength decays with distance.

Thus, the post–change mean of the distribution of observations, which differs across

sensors, is unknown as the location of the event is unknown. We proposed the worst case

mean based on the detection–range of the sensors for the post–change distribution.

Based on the detection–regions of the sensors, we partitioned the ROI into a minimal

number of subregions, each subregion being detection–covered by a unique set of sensors.

We use these sets of corroborating sensors to identify the location of the event. we

proposed the following local decision rules based on CUSUM: MAX, ALL, and HALL,

and a global detection/isolation rule at the corroborating sets of sensors. We analysed

the detection delay performance of the distributed event detection/isolation procedures

we proposed. We showed that as min{TFAi,TFIij} → ∞ for all i, j 6= i, the distribution
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procedures based on ALL and HALL are approximately worst case detection delay optimal.

In this thesis, we studied a number of event detection problems that arise in a WSN

and obtained optimal solutions for the problems. Our studies would help in improving

the design and implementation of a WSN for event detection applications.

For future research, one can explore the problem of sequential event detection on

ad hoc networks (NODM or NADM processing) with sleep–wake scheduling. Also, the

problem of transient change detection on ad hoc networks will be an interesting problem

to explore.
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